Inflammation Research

, Volume 68, Issue 1, pp 25–38 | Cite as

A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future

  • Mehrdad GholamzadEmail author
  • Masoumeh Ebtekar
  • Mehdi Shafiee Ardestani
  • Maryam Azimi
  • Zeinab Mahmodi
  • Mohammad Javad Mousavi
  • Saeed Aslani



Multiple sclerosis (MS) is a chronic and autoimmune disease of the central nervous system (CNS), mainly characterized by inflammatory demyelination, which manifests as relapses and diffuse damage and brain volume loss, both accounting for neurodegeneration, and therefore, physical disability. MS typically affects young adults and is commonly diagnosed in the early years by acute relapses, which then followed through partial or complete remission period. The clinical course of MS is characterized as four major classifications, including relapsing–remitting (RRMS), primary progressive (PPMS), progressive relapsing (PRMS), and secondary progressive (SPMS).


This review provides comprehensive overview of the current treatments and future innovative approaches in the treatment of MS.


Currently, there is no definite cure for MS. The treatment of MS has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, a number of disease-modifying treatments (DMTs) have been designed that reduce the attack rate and delay progression and mainly target inflammation settings in these patients. Although remarkable advancements have occurred in the therapy of MS, the rate of progressive disability and early mortality is still worrisome. Recently, a monoclonal antibody (ocrelizumab) was demonstrated to be beneficial in a clinical trial of primary progressive MS. Furthermore, novel treatment strategies concentrating on the remyelination or neuroprotection are under evaluation.


In spite of prosperous experiences in MS therapy, the future research, hopefully, will bring substantial improvements in the understanding and approaches of MS therapy.


Multiple sclerosis Central nervous system Disease-modifying treatments 



We are thankful of the Department of Microbiology and Immunology facilities at Islamic Azad University-Tehran Medical Branch.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Coclitu C, Constantinescu CS, Tanasescu R. The future of multiple sclerosis treatments. Expert Rev Neurother. 2016;16(12):1341–56.Google Scholar
  2. 2.
    Javan M-R, Seyfizadeh N, Aslani S, Farhoodi M, Babaloo Z. Molecular analysis of interleukin-25 exons 1 and 2 and its serum levels in Iranian patients with multiple sclerosis. Am J Clin Exp Immunol. 2014;3(2):91.Google Scholar
  3. 3.
    Javan MR, Shahraki S, Safa A, Zamani MR, Salmaninejad A, Aslani S. An interleukin 12 B single nucleotide polymorphism increases IL-12p40 production and is associated with increased disease susceptibility in patients with relapsing-remitting multiple sclerosis. Neurol Res. 2017;39(5):435–41.Google Scholar
  4. 4.
    Javan MR, Aslani S, Zamani MR, Rostamnejad J, Asadi M, Farhoodi M, et al. Downregulation of immunosuppressive molecules, PD-1 and PD-L1 but not PD-L2, in the patients with multiple sclerosis. Iran J Allerg Asthma Immunol. 2016;15(4):296.Google Scholar
  5. 5.
    Azimi M, Ghabaee M, Moghadasi AN, Noorbakhsh F, Izad M. Immunomodulatory function of Treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis. Immunol Res. 2018. 1–8.Google Scholar
  6. 6.
    Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58.Google Scholar
  7. 7.
    Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis The 2013 revisions. Neurology. 2014;83(3):278–86.Google Scholar
  8. 8.
    Tanasescu R, Ionete C, Chou I-J, Constantinescu C. Advances in the treatment of relapsing-remitting multiple sclerosis. Biomed J. 2014;37(2):41.Google Scholar
  9. 9.
    Thomas RH, Wakefield RA. Oral disease-modifying therapies for relapsing-remitting multiple sclerosis. Am J Health Syst Pharm. 2015;72(1).Google Scholar
  10. 10.
    Ali R, Nicholas RSJ, Muraro PA. Drugs in development for relapsing multiple sclerosis. Drugs. 2013;73(7):625–50.Google Scholar
  11. 11.
    Boster AL, Ford CC, Neudorfer O, Gilgun-Sherki Y. Glatiramer acetate: long-term safety and efficacy in relapsing-remitting multiple sclerosis. Expert Rev Neurother. 2015;15(6):575–86.Google Scholar
  12. 12.
    Johnson KP, Brooks B, Cohen J, Ford C, Goldstein J, Lisak R, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology. 1995;45(7):1268–76.Google Scholar
  13. 13.
    Lugaresi A, Di Ioia M, Travaglini D, Pietrolongo E, Pucci E, Onofrj M. Risk–benefit considerations in the treatment of relapsing-remitting multiple sclerosis. Neuropsychiatr Dis Treat. 2013;9:893.Google Scholar
  14. 14.
    Palace J, Duddy M, Bregenzer T, Lawton M, Zhu F, Boggild M, et al. Effectiveness and cost-effectiveness of interferon beta and glatiramer acetate in the UK multiple sclerosis risk sharing scheme at 6 years: a clinical cohort study with natural history comparator. Lancet Neurol. 2015;14(5):497–505.Google Scholar
  15. 15.
    Ford C, Goodman A, Johnson K, Kachuck N, Lindsey J, Lisak R, et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult Scler J. 2010;16(3):342–50.Google Scholar
  16. 16.
    Craddock J, Markovic-Plese S. Immunomodulatory therapies for relapsing-remitting multiple sclerosis: monoclonal antibodies, currently approved and in testing. Expert Rev Clin Pharmacol. 2015;8(3):283–96.Google Scholar
  17. 17.
    Polman CH, O’connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910.Google Scholar
  18. 18.
    Miller D, Soon D, Fernando K, MacManus D, Barker G, Yousry T, et al. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology. 2007;68(17):1390–401.Google Scholar
  19. 19.
    Rommer P, Zettl U, Kieseier B, Hartung HP, Menge T, Frohman E, et al. Requirement for safety monitoring for approved multiple sclerosis therapies: an overview. Clin Exp Immunol. 2014;175(3):397–407.Google Scholar
  20. 20.
    McGuigan C, Craner M, Guadagno J, Kapoor R, Mazibrada G, Molyneux P, et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry. 2015: jnnp-2015-311100.Google Scholar
  21. 21.
    Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366(20):1870–80.Google Scholar
  22. 22.
    Plavina T, Subramanyam M, Bloomgren G, Richman S, Pace A, Lee S, et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol. 2014;76(6):802–12.Google Scholar
  23. 23.
    Torkildsen Ø, Myhr KM, Bø L. Disease-modifying treatments for multiple sclerosis—a review of approved medications. Eur J Neurol. 2016;23(S1):18–27.Google Scholar
  24. 24.
    Jones JL, Coles AJ. Mode of action and clinical studies with alemtuzumab. Exp Neurol. 2014;262:37–43.Google Scholar
  25. 25.
    Singer BA, editor. Parenteral treatment of multiple sclerosis: the advent of monoclonal antibodies. Seminars in neurology; 2016. Thieme Medical Publishers.Google Scholar
  26. 26.
    Cohen JA, Arnold DL, Comi G, Bar-Or A, Gujrathi S, Hartung JP, et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(4):373–81.Google Scholar
  27. 27.
    Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39.Google Scholar
  28. 28.
    Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung H-P, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28.Google Scholar
  29. 29.
    Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci. 2006;103(15):5941–6.Google Scholar
  30. 30.
    Wynn D, Kaufman M, Montalban X, Vollmer T, Simon J, Elkins J, et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol. 2010;9(4):381–90.Google Scholar
  31. 31.
    Gold R, Giovannoni G, Selmaj K, Havrdova E, Montalban X, Radue E-W, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. The Lancet. 2013;381(9884):2167–75.Google Scholar
  32. 32.
    Giovannoni G, Gold R, Selmaj K, Havrdova E, Montalban X, Radue E-W, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECTION): a multicentre, randomised, double-blind extension trial. Lancet Neurol. 2014;13(5):472–81.Google Scholar
  33. 33.
    Cortese I, Ohayon J, Fenton K, Lee C-C, Raffeld M, Cowen EW, et al. Cutaneous adverse events in multiple sclerosis patients treated with daclizumab. Neurology. 2016;86(9):847–55.Google Scholar
  34. 34.
    Baldassari LE, Rose JW. Daclizumab: development, clinical trials, and practical aspects of use in multiple sclerosis. Neurotherapeutics. 2017:1–17.Google Scholar
  35. 35.
    Li J-M, Yang Y, Zhu P, Zheng F, Gong F-L, Mei Y-W. Mitoxantrone exerts both cytotoxic and immunoregulatory effects on activated microglial cells. Immunopharmacol Immunotoxicol. 2012;34(1):36–41.Google Scholar
  36. 36.
    Millefiorini E, Gasperini C, Pozzilli C, D’andrea F, Bastianello S, Trojano M, et al. Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J Neurol. 1997;244(3):153–9.Google Scholar
  37. 37.
    Hartung H-P, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002;360(9350):2018–25.Google Scholar
  38. 38.
    Tanasescu R, Debouverie M, Pittion S, Anxionnat R, Vespignani H. Acute myeloid leukaemia induced by mitoxantrone in a multiple sclerosis patient. J Neurol. 2004;251(6):762–3.Google Scholar
  39. 39.
    Tanasescu R, Evangelou N, Constantinescu CS. Role of oral teriflunomide in the management of multiple sclerosis. Neuropsychiatr Dis Treat. 2013;9:539.Google Scholar
  40. 40.
    O’connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293–303.Google Scholar
  41. 41.
    Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(3):247–56.Google Scholar
  42. 42.
    Vermersch P, Czlonkowska A, Grimaldi LM, Confavreux C, Comi G, Kappos L, et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler J. 2014;20(6):705–16.Google Scholar
  43. 43.
    Miller AE, Wolinsky JS, Kappos L, Comi G, Freedman MS, Olsson TP, et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(10):977–86.Google Scholar
  44. 44.
    Comi G, Freedman MS, Kappos L, Olsson TP, Miller AE, Wolinsky JS, et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord. 2016;5:97–104.Google Scholar
  45. 45.
    Linker RA, Gold R. Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects. Curr Neurol Neurosci Rep. 2013;13(11):394.Google Scholar
  46. 46.
    Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107.Google Scholar
  47. 47.
    Havrdova E, Hutchinson M, Kurukulasuriya NC, Raghupathi K, Sweetser MT, Dawson KT et al. Oral BG-12 (dimethyl fumarate) for relapsing–remitting multiple sclerosis: a review of DEFINE and CONFIRM: Evaluation of: Gold R, Kappos L, Arnold D, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367: 1098–107; and Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012; 367: 1087–97. Expert Opin Pharmacother. 2013;14(15):2145–56.Google Scholar
  48. 48.
    Gold R, Arnold DL, Bar-Or A, Hutchinson M, Kappos L, Havrdova E, et al. Long-term effects of delayed-release dimethyl fumarate in multiple sclerosis: Interim analysis of ENDORSE, a randomized extension study. Mult Scler J. 2017;23(2):253–65.Google Scholar
  49. 49.
    Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002;277(24):21453–7.Google Scholar
  50. 50.
    Tanasescu R, Constantinescu CS. Pharmacokinetic evaluation of fingolimod for the treatment of multiple sclerosis. Expert Opin Drug Metab Toxicol. 2014;10(4):621–30.Google Scholar
  51. 51.
    Groves A, Kihara Y, Chun J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci. 2013;328(1):9–18.Google Scholar
  52. 52.
    Kappos L, Radue E-W, O’connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.Google Scholar
  53. 53.
    Cohen JA, Barkhof F, Comi G, Hartung H-P, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15.Google Scholar
  54. 54.
    Lublin F, Miller DH, Freedman MS, Cree BA, Wolinsky JS, Weiner H, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10023):1075–84.Google Scholar
  55. 55.
    Ayzenberg I, Hoepner R, Kleiter I. Fingolimod for multiple sclerosis and emerging indications: appropriate patient selection, safety precautions, and special considerations. Ther Clin Risk Manag. 2016;12:261.Google Scholar
  56. 56.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.Google Scholar
  57. 57.
    Komori M, Lin YC, Cortese I, Blake A, Ohayon J, Cherup J, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol. 2016;3(3):166–79.Google Scholar
  58. 58.
    Berenguer-Ruiz L, Sempere AP, Gimenez-Martinez J, Gabaldon-Torres L, Tahoces L, Sanchez-Perez R, et al. Rescue therapy using rituximab for multiple sclerosis. Clin Neuropharmacol. 2016;39(4):178–81.Google Scholar
  59. 59.
    Alping P, Frisell T, Novakova L, Islam-Jakobsson P, Salzer J, Björck A, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol. 2016;79(6):950–8.Google Scholar
  60. 60.
    Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378(9805):1779–87.Google Scholar
  61. 61.
    Hauser S, Comi G, Hartung H, Selmaj K, Traboulsee A, Bar-Or A. on behalf of the OPERA I and II clinical investigators. Efficacy and safety of ocrelizumab in relapsing multiple sclerosis—results of the interferon-beta-1a-controlled, double-blind, Phase III OPERA I and II studies ECTRIMS Online Libr. 2015;116634.Google Scholar
  62. 62.
    Traboulsee A, Arnold D, Bar-Or A, Comi G, Hartung H-P, Kappos L, et al. Ocrelizumab no evidence of disease activity (NEDA) status at 96 weeks in patients with relapsing multiple sclerosis: analysis of the phase III double-blind, double-dummy, interferon beta-1a-controlled OPERA I and OPERA II studies (PL02. 004). Neurology. 2016;86(16 Supplement):PL02.004.Google Scholar
  63. 63.
    Montalban X, Hemmer B, Rammohan K, Giovannoni G, De Seze J, Bar-Or A. Efficacy and safety of ocrelizumab in primary progressive multiple sclerosis-results of the placebo-controlled, double-blind, Phase III ORATORIO study. Mult Scler. 2015;21(S1):781–2.Google Scholar
  64. 64.
    Sorensen PS, Lisby S, Grove R, Derosier F, Shackelford S, Havrdova E, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis A phase 2 study. Neurology. 2014;82(7):573–81.Google Scholar
  65. 65.
    Bar-Or A, Grove R, Austin D, Tolson J, Vanmeter S, Lewis E, et al. The MIRROR study: a randomized, double-blind, placebo-controlled, parallel-group, dose-ranging study to investigate the safety and MRI efficacy of subcutaneous ofatumumab in subjects with Relapsing-Remitting Multiple Sclerosis (RRMS)(I7-1.007). Neurology. 2014;82(10 Supplement):I7-1.007.Google Scholar
  66. 66.
    Brück W, Wegner C. Insight into the mechanism of laquinimod action. J Neurol Sci. 2011;306(1):173–9.Google Scholar
  67. 67.
    Kim W, Zandoná ME, Kim S-H, Kim HJ. Oral disease-modifying therapies for multiple sclerosis. J Clin Neurol. 2015;11(1):9–19.Google Scholar
  68. 68.
    Yang J-S, Xu L-Y, Xiao B-G, Hedlund G, Link H. Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-β in Lewis rats. J Neuroimmunol. 2004;156(1):3–9.Google Scholar
  69. 69.
    Thöne J, Gold R. Laquinimod: a promising oral medication for the treatment of relapsing-remitting multiple sclerosis. Expert Opin Drug Metab Toxicol. 2011;7(3):365–70.Google Scholar
  70. 70.
    Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L, et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry. 2013:jnnp-2013-306132.Google Scholar
  71. 71.
    Vollmer T, Sorensen P, Selmaj K, Zipp F, Havrdova E, Cohen J, et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol. 2014;261(4):773–83.Google Scholar
  72. 72.
    Varrin-Doyer M, Zamvil SS, Schulze-Topphoff U. Laquinimod, an up-and-coming immunomodulatory agent for treatment of multiple sclerosis. Exp Neurol. 2014;262:66–71.Google Scholar
  73. 73.
    Huynh E, Sigal D, Saven A. Cladribine in the treatment of hairy cell leukemia: initial and subsequent results. Leuk Lymphoma. 2009;50(sup1):12–7.Google Scholar
  74. 74.
    Beutler E. Cladribine (2-chlorodeoxyadenosine). Lancet. 1992;340(8825):952–6.Google Scholar
  75. 75.
    Thöne J, Ellrichmann G. Oral available agents in the treatment of relapsing remitting multiple sclerosis: an overview of merits and culprits. Drug Healthc Patient Saf. 2013;5:37.Google Scholar
  76. 76.
    Beutler E, Sipe J, Romine J, Koziol J, McMillan R, Zyroff J. The treatment of chronic progressive multiple sclerosis with cladribine. Proc Natl Acad Sci. 1996;93(4):1716–20.Google Scholar
  77. 77.
    Sipe J, Romine J, Koziol J, McMillan R, Beutler E, Zyroff J. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet. 1994;344(8914):9–13.Google Scholar
  78. 78.
    Cook S, Vermersch P, Comi G, Giovannoni G, Rammohan K, Rieckmann P, et al. Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine tablets treating multiple sclerosis orallY) study. Mult Scler Jo. 2011;17(5):578–93.Google Scholar
  79. 79.
    Giovannoni G, Comi G, Cook S, Rieckmann P, Rammohan K, Soelberg-Soerensenn P, et al. Clinical efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis (RRMS): final results from the 120-week phase IIIb extension trial to the CLARITY study (P3. 028). Neurology. 2016;86(16 Supplement):P3.028.Google Scholar
  80. 80.
    Comi G, Cook S, Giovannoni G, Rammohan K, Rieckmann P, Soelberg-Sorensen P et al, editors. Magnetic resonance imaging (MRI) outcomes in patients with relapsing-remitting multiple sclerosis (RRMS) treated with cladribine tablets: results from the CLARITY study, a 96-week, phase III, double-blind, placebo-controlled trial. J Neurol; 2009 (Dr Dietrich Steinkopff Verlag).Google Scholar
  81. 81.
    Montalban X, Cohen B, Leist T, Moses H, Hicking C, Dangond F. Efficacy of cladribine tablets as add-on to IFN-beta therapy in patients with active relapsing MS: final results from the phase II ONWARD study (P3. 029). Neurology. 2016;86(16 Supplement):P3.029.Google Scholar
  82. 82.
    Leist TP, Comi G, Cree BA, Coyle PK, Freedman MS, Hartung H-P, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014;13(3):257–67.Google Scholar
  83. 83.
    Freedman M, Leist T, Comi G, Cree B, Coyle P, Hartung H-P, et al. Efficacy of cladribine tablets in ORACLE study patients who retrospectively met 2010 McDonald multiple sclerosis (MS) criteria at baseline (P3. 035). Neurology. 2016;86(16 Supplement):P3.035.Google Scholar
  84. 84.
    Pakpoor J, Disanto G, Altmann DR, Pavitt S, Turner BP, Marta M, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e158.Google Scholar
  85. 85.
    Gonzalez-Cabrera PJ, Brown S, Studer SM, Rosen H. S1P signaling: new therapies and opportunities. F1000 prime reports. 2014;6.Google Scholar
  86. 86.
    Selmaj K, Li DK, Hartung H-P, Hemmer B, Kappos L, Freedman MS, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013;12(8):756–67.Google Scholar
  87. 87.
    Karussis D, Vourka-Karussis U, Mizrachi-Koll R, Abramsky O. Acute/relapsing experimental autoimmune encephalomyelitis: induction of long lasting, antigen-specific tolerance by syngeneic bone marrow transplantation. Mult Scler J. 1999;5(1):017–21.Google Scholar
  88. 88.
    Radaelli M, Merlini A, Greco R, Sangalli F, Comi G, Ciceri F, et al. Autologous bone marrow transplantation for the treatment of multiple sclerosis. Curr Neurol Neurosci Rep. 2014;14(9):478.Google Scholar
  89. 89.
    Muraro PA, Douek DC. Renewing the T cell repertoire to arrest autoimmune aggression. Trends Immunol. 2006;27(2):61–7.Google Scholar
  90. 90.
    Karussis D, Petrou P, Vourka-Karussis U, Kassis I. Hematopoietic stem cell transplantation in multiple sclerosis. Expert Rev Neurother. 2013;13(5):567–78.Google Scholar
  91. 91.
    Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis A phase II trial. Neurology. 2015;84(10):981–8.Google Scholar
  92. 92.
    Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388(10044):576–85.Google Scholar
  93. 93.
    Freedman M, Atkins HL. Haematopoietic stem cell transplants should be a second-line therapy for highly active MS–YES. Mult Scler J. 2016:1352458516654311.Google Scholar
  94. 94.
    Soelberg Sorensen P. Haematopoietic stem cell transplants should be a second-line therapy for highly active MS–NO. Mult Scler J. 2016;22(10):1260–3.Google Scholar
  95. 95.
    Franklin RJ, Kotter MR. The biology of CNS remyelination. J Neurol. 2008;255:19–25.Google Scholar
  96. 96.
    Peferoen L, Kipp M, Valk P, Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2014;141(3):302–13.Google Scholar
  97. 97.
    Foote A, Blakemore W. Inflammation stimulates remyelination in areas of chronic demyelination. Brain. 2005;128(3):528–39.Google Scholar
  98. 98.
    Münzel EJ, Williams A. Promoting remyelination in multiple sclerosis—recent advances. Drugs. 2013;73(18):2017–29.Google Scholar
  99. 99.
    Zendedel A, Beyer C, Kipp M. Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci. 2013;51(2):567–72.Google Scholar
  100. 100.
    Blanchard B, Heurtaux T, Garcia C, Moll NM, Caillava C, Grandbarbe L, et al. Tocopherol derivative TFA-12 promotes myelin repair in experimental models of multiple sclerosis. J Neurosci. 2013;33(28):11633–42.Google Scholar
  101. 101.
    Meffre D, Massaad C, Grenier J. Lithium chloride stimulates PLP and MBP expression in oligodendrocytes via Wnt/β-catenin and Akt/CREB pathways. Neuroscience. 2015;284:962–71.Google Scholar
  102. 102.
    Preisner A, Albrecht S, Cui Q-L, Hucke S, Ghelman J, Hartmann C, et al. Non-steroidal anti-inflammatory drug indometacin enhances endogenous remyelination. Acta Neuropathol. 2015;130(2):247–61.Google Scholar
  103. 103.
    Huang JK, Jarjour AA, Oumesmar BN, Kerninon C, Williams A, Krezel W, et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci. 2011;14(1):45–53.Google Scholar
  104. 104.
    de la Fuente AG, Errea O, van Wijngaarden P, Gonzalez GA, Kerninon C, Jarjour AA, et al. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J Cell Biol. 2015;211(5):975–85.Google Scholar
  105. 105.
    Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522(7555):216–20.Google Scholar
  106. 106.
    Trifunovski A, Josephson A, Ringman A, Brené S, Spenger C, Olson L. Neuronal activity-induced regulation of Lingo-1. Neuroreport. 2004;15(15):2397–400.Google Scholar
  107. 107.
    Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004;7(3):221–8.Google Scholar
  108. 108.
    Rudick RA, Mi S, Sandrock AW Jr. LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence. Expert Opin Biol Ther. 2008;8(10):1561–70.Google Scholar
  109. 109.
    Wang CJ, Qu CQ, Zhang J, Fu PC, Guo SG, Tang RH. Lingo-1 inhibited by RNA interference promotes functional recovery of experimental autoimmune encephalomyelitis. Anat Record. 2014;297(12):2356–63.Google Scholar
  110. 110.
    Pepinsky RB, Shao Z, Ji B, Wang Q, Walus L, Lee X, et al. Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J Pharmacol Exp Ther. 2011;339(2):519–29.Google Scholar
  111. 111.
    Tran JQ, Rana J, Barkhof F, Melamed I, Gevorkyan H, Wattjes MP, et al. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm. 2014;1(2):e18.Google Scholar
  112. 112.
    Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell stem cell. 2013;12(2):252–64.Google Scholar
  113. 113.
    Boyd A, Zhang H, Williams A. Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol. 2013;125(6):841–59.Google Scholar
  114. 114.
    Abramowski P, Krasemann S, Ernst T, Lange C, Ittrich H, Schweizer M, et al. Mesenchymal stromal/stem cells do not ameliorate experimental autoimmune encephalomyelitis and are not detectable in the central nervous system of transplanted mice. Stem Cells Dev. 2016;25(15):1134–48.Google Scholar
  115. 115.
    Meamar R, Nematollahi S, Dehghani L, Mirmosayyeb O, Shayegannejad V, Basiri K, et al. The role of stem cell therapy in multiple sclerosis: An overview of the current status of the clinical studies. Adv Biomed Res. 2016;5.Google Scholar
  116. 116.
    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–94.Google Scholar
  117. 117.
    Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV, et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol. 1994;153(10):4349–56.Google Scholar
  118. 118.
    Fritz R, Chou C, McFarlin D. Relapsing murine experimental allergic encephalomyelitis induced by myelin basic protein. J Immunol. 1983;130(3):1024–6.Google Scholar
  119. 119.
    Tuohy V, Sobel R, Lees M. Myelin proteolipid protein-induced experimental allergic encephalomyelitis. Variations of disease expression in different strains of mice. J Immunol. 1988;140(6):1868–73.Google Scholar
  120. 120.
    Johns TG, de Rosbo NK, Menon KK, Abo S, Gonzales MF, Bernard C. Myelin oligodendrocyte glycoprotein induces a demyelinating encephalomyelitis resembling multiple sclerosis. J Immunol. 1995;154(10):5536–41.Google Scholar
  121. 121.
    Fissolo N, Montalban X, Comabella M. DNA-based vaccines for multiple sclerosis: current status and future directions. Clin Immunol. 2012;142(1):76–83.Google Scholar
  122. 122.
    Billetta R, Ghahramani N, Morrow O, Prakken B, de Jong H, Meschter C, et al. Epitope-specific immune tolerization ameliorates experimental autoimmune encephalomyelitis. Clin Immunol. 2012;145(2):94–101.Google Scholar
  123. 123.
    Spence A, Klementowicz JE, Bluestone JA, Tang Q. Targeting Treg signaling for the treatment of autoimmune diseases. Curr Opin Immunol. 2015;37:11–20.Google Scholar
  124. 124.
    Lutterotti A, Yousef S, Sputtek A, Stürner KH, Stellmann J-P, Breiden P, et al. Antigen-specific tolerance by autologous myelin peptide–coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med. 2013;5(188):188ra75-ra75.Google Scholar
  125. 125.
    Hellings N, Raus J, Stinissen P. T-cell vaccination in multiple sclerosis: update on clinical application and mode of action. Autoimmun Rev. 2004;3(4):267–75.Google Scholar
  126. 126.
    Vandenbark AA, Abulafia-Lapid R. Autologous T-cell vaccination for multiple sclerosis. Biodrugs. 2008;22(4):265–73.Google Scholar
  127. 127.
    Fox E, Wynn D, Cohan S, Rill D, McGuire D, Markowitz C. A randomized clinical trial of autologous T-cell therapy in multiple sclerosis: subset analysis and implications for trial design. Mult Scler J. 2012;18(6):843–52.Google Scholar
  128. 128.
    Karussis D, Shor H, Yachnin J, Lanxner N, Amiel M, Baruch K, et al. T cell vaccination benefits relapsing progressive multiple sclerosis patients: a randomized, double-blind clinical trial. PLoS One. 2012;7(12):e50478.Google Scholar
  129. 129.
    Aslani S, Mahmoudi M, Garshasbi M, Jamshidi AR, Karami J, Nicknam MH. Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis. Clin Rheumatol. 2016;35(11):2723–31.Google Scholar
  130. 130.
    Rezaei R, Mahmoudi M, Gharibdoost F, Kavosi H, Dashti N, Imeni V, et al. IRF7 gene expression profile and methylation of its promoter region in patients with systemic sclerosis. Int J Rheum Dis. 2017;20(10):1551–61.Google Scholar
  131. 131.
    Karami J, Mahmoudi M, Amirzargar A, Gharshasbi M, Jamshidi A, Aslani S, et al. Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients. Genes Immun. 2017;18(3):170–5.Google Scholar
  132. 132.
    Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Modern Rheumatol. 2017;27(2):198–209.Google Scholar
  133. 133.
    Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity. 2016;49(2):69–83.Google Scholar
  134. 134.
    Foma AM, Aslani S, Karami J, Jamshidi A, Mahmoudi M. Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm Res. 2017:1–17.Google Scholar
  135. 135.
    Camelo S, Iglesias AH, Hwang D, Due B, Ryu H, Smith K, et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol. 2005;164(1):10–21.Google Scholar
  136. 136.
    Ge Z, Da Y, Xue Z, Zhang K, Zhuang H, Peng M, et al. Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis. Exp Neurol. 2013;241:56–66.Google Scholar
  137. 137.
    Zhang Z, Zhang Z-Y, Wu Y, Schluesener H. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience. 2012;221:140–50.Google Scholar
  138. 138.
    Xie L, Li X-K, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y, et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol. 2009;9(5):575–81.Google Scholar
  139. 139.
    Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC, Rostami A. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol. 2010;30(4):328.Google Scholar
  140. 140.
    Chan MW, Chang C-B, Tung C-H, Sun J, Suen J-L, Wu S-F. Low-dose 5-aza-2′-deoxycytidine pretreatment inhibits experimental autoimmune encephalomyelitis by induction of regulatory T cells. Mol Med. 2014;20(1):248.Google Scholar
  141. 141.
    Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10(12):1252–9.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mehrdad Gholamzad
    • 1
    Email author
  • Masoumeh Ebtekar
    • 2
  • Mehdi Shafiee Ardestani
    • 3
  • Maryam Azimi
    • 4
  • Zeinab Mahmodi
    • 1
  • Mohammad Javad Mousavi
    • 4
    • 5
    • 6
  • Saeed Aslani
    • 4
    • 6
  1. 1.Department of Microbiology and Immunology, Faculty of MedicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
  2. 2.Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Radiopharmacy, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  4. 4.Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
  5. 5.Department of Hematology, Faculty of Allied MedicineBushehr University of Medical SciencesBushehrIran
  6. 6.Rheumatology Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations