Advertisement

Inflammation Research

, Volume 67, Issue 10, pp 801–812 | Cite as

Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer

  • Fatemeh Shabani
  • Alireza Farasat
  • Majid Mahdavi
  • Nematollah Gheibi
Review
  • 446 Downloads

Abstract

Background

Calprotectin (S100A8/S100A9), a heterodimeric EF-hand Ca2+ binding protein, are abundant in cytosol of neutrophils and are involved in inflammatory processes and several cancerous pathogens.

Objective

The purpose of the present systematic review is to evaluate the pro- and anti-tumorigenic functions of calprotectin and its relation to inflammation.

Materials and methods

We conducted a review of studies published in the Medline (1966–2018), Scopus (2004–2018), ClinicalTrials.gov (2008–2018) and Google Scholar (2004–2018) databases, combined with studies found in the reference lists of the included studies.

Results

Elevated levels of S100A8/S100A9 were detected in inflammation, neoplastic tumor cells and various human cancers. Recent data have explained that many cancers arise from sites of infection, chronic irritation, and inflammation. The inflammatory microenvironment which largely includes calprotectin, has an essential role on high producing of inflammatory factors and then on neoplastic process and metastasis.

Conclusion

Scientists have shown different outcomes in inflammation, malignancy and apoptosis whether the source of the aforementioned protein is extracellular or intracellular. These findings are offering new insights that anti-inflammatory therapeutic agents and anti-tumorigenic functions of calprotectin can lead to control cancer development.

Keywords

Calprotectin S100A8/S100A9 Inflammation Cancer Apoptosis 

Notes

Acknowledgements

This work was supported by the Deputy of Research and Technology, Qazvin University of Medical Sciences., Qazvin, Iran.

Author contributions

All authors contributed equally in this work.

Funding

The authors declare no financial relationships relevant to this article to disclose.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    Nishikawa Y, Kajiura Y, Lew JH, Kido JI, Nagata T, Naruishi K. Calprotectin induces IL-6 and MCP-1 production via toll-like receptor 4 signaling in human gingival fibroblasts. J Cell Physiol. 2017;232(7):1862–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Moore BW, McGregor D. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J Biol Chem. 1965;240(1647):53–60.Google Scholar
  3. 3.
    Shahsavari A, Azad M, Mobarra N, Chegini KG, Gheibi N. Calprotectin pegylation enhanced its physical and structural properties. Protein J. 2016;35(5):363–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Koy M, Hambruch N, Hussen J, Pfarrer C, Seyfert H-M, Schuberth H-J. Recombinant bovine S100A8 and A9 enhance IL-1β secretion of interferon-gamma primed monocytes. Vet Immunol Immunopathol. 2013;155(3):162–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Abtin AEL, Glaser R, Gmeiner R, Mildner M, et al. The antimicrobial heterodimer S100A8/S100A9 (calprotectin) is upregulated by bacterial flagellin in human epidermal keratinocytes. J Invest Dermatol. 2010;130:2423–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Strupat K, Rogniaux H, Van Dorsselaer A, Roth J, Vogl T. Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 are confirmed by electrospray ionization-mass analysis. J Am Soc Mass Spectrom. 2000;11(9):780–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Hongyan Chen CX. Qing’e Jin, Zhihua Liu. Review Article S100 protein family in human cancer. Am J Cancer Res. 2014;4(2):89–115.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Loser K, Vogl T, Voskort M, Lueken A, Kupas V, Nacken W, et al. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med. 2010;16(6):713–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Ghavami S, Tehrani FK, Hashemi M, Zarif MN. Possible involvement of a specific cell surface receptor for calprotectin-induced apoptosis in colon adenocarcinoma and carcinam cell lines (SW742 and HT29/219). J Sci Islamic Repub Iran. 2004;15(1):3–12.Google Scholar
  10. 10.
    Poullis A, Foster R, Mendall MA, Fagerhol MK. Emerging role of calprotectin in gastroenterology. J Gastroenterol Hepatol. 2003;18(7):756–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Nilsen T, Sunde K, Larsson A. A new turbidimetric immunoassay for serum calprotectin for fully automatized clinical analysers. J Inflamm. 2015;12(1):45.CrossRefGoogle Scholar
  12. 12.
    Rumman N, Sultan M, El-Chammas K, Goh V, Salzman N, Quintero D, et al. Calprotectin in cystic fibrosis. BMC Pediatr. 2014;14(1):133.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vincent Z, Hornby S, Ball S, Sanders G, Ayling RM. Faecal calprotectin as a marker for oesophago-gastric cancer. Ann Clin Biochem. 2015;52(6):660–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Goyette J, Geczy CL. Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids. 2011;41(4):821–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM. Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J. 2010;277(22):4578–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Thomas Vogl ALG, Ludmilla A. Morozova-Roche. Pro-Inflammatory. S100A8 and S100A9 proteins: self-assembly into multifunctional native and amyloid complexes. Int J Mol Sci. 2012;13:2893–917.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Völkers M, Rohde D, Goodman C, Most P. S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+. BioMed Res Int. 2010;2010:1–10.Google Scholar
  18. 18.
    Imani M, Bahrami Y, Jaliani HZ, Ardestani SK. In Solution cation-induced secondary and tertiary structure alterations of human calprotectin. Protein J. 2014;33(5):465–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Asghari H, Chegini KG, Amini A, Gheibi N. Effect of poly and mono-unsaturated fatty acids on stability and structure of recombinant S100A8/A9. Int J Biol Macromol. 2016;84:35–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Gheibi N, Asghari H, Chegini K, Sahmani M, Moghadasi M. The role of calcium in the conformational changes of the recombinant S100A8/S100A9. Mol Biol. 2016;50(1):136–42.CrossRefGoogle Scholar
  21. 21.
    Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and-independent interactions of the S100 protein family. Biochem J. 2006;396(2):201–14.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Korndörfer IP, Brueckner F, Skerra A. The crystal structure of the human (S100A8/S100A9) 2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins. J Mol Biol. 2007;370(5):887–98.CrossRefPubMedGoogle Scholar
  23. 23.
    Gagnon DM, Brophy MB, Bowman SE, Stich TA, Drennan CL, Britt RD, et al. Manganese binding properties of human calprotectin under conditions of high and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis. J Am Chem Soc. 2015;137(8):3004–16.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Robinson MJ, Tessier P, Poulsom R, Hogg N. The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem. 2002;277(5):3658–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Viemann D, Strey A, Janning A, Jurk K, Klimmek K, Vogl T, et al. Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells. Blood. 2005;105(7):2955–62.CrossRefPubMedGoogle Scholar
  26. 26.
    NematiNiko F, Chegini KG, Asghari H, Amini A, Gheibi N. Modifying effects of carboxyl group on the interaction of recombinant S100A8/A9 complex with tyrosinase. Biochim Biophys Acta (BBA) Proteins Proteom. 2017;1865(3):370–9.CrossRefGoogle Scholar
  27. 27.
    Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products. Circulation. 2006;114(6):597–605.CrossRefPubMedGoogle Scholar
  28. 28.
    Tesarova P, Kalousova M, Zima T, Tesar V. HMGB1, S100 proteins and other RAGE ligands in cancer-markers, mediators and putative therapeutic targets. Biomed Papers. 2016;160(1):1–10.CrossRefGoogle Scholar
  29. 29.
    Yatime L, Betzer C, Jensen Rasmus K, Mortensen S, Jensen Poul H, Andersen Gregers R. The structure of the RAGE: S100A6 complex reveals a unique mode of homodimerization for S100 proteins. Structure. 2016;24(12):2043–52.CrossRefPubMedGoogle Scholar
  30. 30.
    Kang JH, Hwang SM, Chung IY. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways. Immunology. 2015;144(1):79–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Ma L, Sun P, Zhang J-C, Zhang Q, Yao S-L. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int J Mol Med. 2017;40(1):31–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yatime L, Betzer C, Jensen RK, Mortensen S, Jensen PH, Andersen GR. The structure of the RAGE: S100A6 complex reveals a unique mode of homodimerization for S100 proteins. Structure. 2016;24(12):2043–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Leclerc E, Heizmann C. The importance of Ca2+/Zn2 + signaling S100 proteins and RAGE in translational medicine. Front Biosci (Sch ed). 2011;3:1232–62.Google Scholar
  34. 34.
    Heizmann C, Ackermann G, Galichet A. Pathologies involving the S100 proteins and RAGE. calcium signalling and disease. Springer. 2007;45:93–138.Google Scholar
  35. 35.
    Yatime L, Andersen GR. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. FEBS J. 2013;280(24):6556–68.CrossRefPubMedGoogle Scholar
  36. 36.
    Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, Van Zoelen MA, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat medicine. 2007;13(9):1042–9.CrossRefGoogle Scholar
  37. 37.
    Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 2009;86(3):557–66.CrossRefPubMedGoogle Scholar
  38. 38.
    Bhattacharyya S, Varga J. Endogenous ligands of TLR4 promote unresolving tissue fibrosis: Implications for systemic sclerosis and its targeted therapy. Immunol Lett. 2018;195:9–17.CrossRefPubMedGoogle Scholar
  39. 39.
    Joosten LA, Abdollahi-Roodsaz S, Dinarello CA, O’neill L, Netea MG. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol. 2016;12(6):344–57.CrossRefPubMedGoogle Scholar
  40. 40.
    Xin X, Zeng X, Gu H, Li M, Tan H, Jin Z, et al. CD147/EMMPRIN overexpression and prognosis in cancer: a systematic review and meta-analysis. Sci Rep. 2016;6:1–12.CrossRefGoogle Scholar
  41. 41.
    Kaushik DK, Hahn JN, Yong VW. EMMPRIN, an upstream regulator of MMPs, in CNS biology. Matrix Biol. 2015;44:138–46.CrossRefPubMedGoogle Scholar
  42. 42.
    Yamamoto M, Sakaguchi M, Motoyama A, Huh N-h, Tsuboi R, Hibino T. Identification of a novel receptor for S100A8 and its possible involvement in abnormal proliferation. J Dermatol Sci. 2013;69(2):e5.CrossRefGoogle Scholar
  43. 43.
    Hojilla CV, Wood GA, Khokha R. Inflammation and breast cancer. Metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res. 2008;10(2):205–12.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nabeshima K, Iwasaki H, Koga K, Hojo H, Suzumiya J, Kikuchi M. Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathol Int. 2006;56(7):359–67.CrossRefPubMedGoogle Scholar
  45. 45.
    Kanekura T, Chen X. CD147/basigin promotes progression of malignant melanoma and other cancers. J Dermatol Sci. 2010;57(3):149–54.CrossRefPubMedGoogle Scholar
  46. 46.
    Hibino T, Sakaguchi M, Miyamoto S, Yamamoto M, Motoyama A, Hosoi J, Shimokata T, Ito T, Tsuboi R, Huh N. S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res. 2013;73:172–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Leukert N, Sorg C, Roth J. Molecular basis of the complex formation between the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14). Biol Chem. 2005;386(5):429–34.CrossRefPubMedGoogle Scholar
  48. 48.
    Alexaki VI, May AE, Fujii C, Ungern-Sternberg SNV, Mund C, Gawaz M, et al. S100A9 induces monocyte/macrophage migration via EMMPRIN. Thromb Haemost. 2017;117(03):636–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin–CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol. 2010;160(3):305–17.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Yu X-L, Hu T, Du J-M, Ding J-P, Yang X-M, Zhang J, et al. Crystal structure of HAb18G/CD147 implications for immunoglobulin superfamily homophilic adhesion. J Biol Chem. 2008;283(26):18056–65.CrossRefPubMedGoogle Scholar
  51. 51.
    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.CrossRefPubMedGoogle Scholar
  52. 52.
    Munn LL. Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med. 2017;9(2):e1370.CrossRefGoogle Scholar
  53. 53.
    Marelli G, Sica A, Vannucci L, Allavena P. Inflammation as target in cancer therapy. Curr Opin Pharmacol. 2017;35:57–65.CrossRefPubMedGoogle Scholar
  54. 54.
    Mose M, Kang Z, Raaby L, Iversen L, Johansen C. TNFα-and IL-17A-mediated S100A8 expression is regulated by p38 MAPK. Exp Dermatol. 2013;22(7):476–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Munn L. Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med. 2017;9(2):1–19.CrossRefGoogle Scholar
  56. 56.
    Yamanishi Y, Boyle DL, Rosengren S, Green DR, Zvaifler NJ, Firestein GS. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci. 2002;99(15):10025–30.CrossRefPubMedGoogle Scholar
  57. 57.
    Rodríguez LAG, Huerta-Alvarez C. Reduced risk of colorectal cancer among long-term users of aspirin and nonaspirin nonsteroidal antiinflammatory drugs. Epidemiology. 2001;12(1):88–93.CrossRefGoogle Scholar
  58. 58.
    Friis S, Riis AH, Erichsen R, Baron JA, Sørensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer RiskA population-based, case–control study NSAID use and colon cancer risk. Ann Intern Med. 2015;163(5):347–55.CrossRefPubMedGoogle Scholar
  59. 59.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Muranushi C, Olsen CM, Pandeya N, Green AC. Aspirin and nonsteroidal anti-inflammatory drugs can prevent cutaneous squamous cell carcinoma: a systematic review and meta-analysis. J Investig Dermatol. 2015;135(4):975–83.CrossRefPubMedGoogle Scholar
  61. 61.
    Park JH, Watt DG, Roxburgh CS, Horgan PG, McMillan DC. Colorectal cancer, systemic inflammation, and outcome. Ann Surg. 2016;263(2):326–36.CrossRefPubMedGoogle Scholar
  62. 62.
    Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol. 2014;20(29):9872–81.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Raimondi S, Lowenfels AB, Morselli-Labate AM, Maisonneuve P, Pezzilli R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol. 2010;24(3):349–58.CrossRefPubMedGoogle Scholar
  64. 64.
    Bleeker MC, Visser PJ, Overbeek LI, van Beurden M, Berkhof J. Lichen sclerosus: incidence and risk of vulvar squamous cell carcinoma. Cancer Epidemiol Prev Biomark. 2016;25(8):1224–30.CrossRefGoogle Scholar
  65. 65.
    Reid BJ, Li X, Galipeau PC, Vaughan TL. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer. 2010;10(2):87–101.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507(7490):109–13.CrossRefPubMedGoogle Scholar
  67. 67.
    Morrison WB. Inflammation and cancer: a comparative view. J Vet Intern Med. 2012;26(1):18–31.CrossRefPubMedGoogle Scholar
  68. 68.
    Sgambato A, Cittadini A. Inflammation and cancer: a multifaceted link. Eur Rev Med Pharmacol Sci. 2010;14(4):263–8.PubMedGoogle Scholar
  69. 69.
    El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rubinstein PG, Aboulafia DM, Zloza A. Malignancies in HIV/AIDS: from epidemiology to therapeutic challenges. AIDS (Lond Engl). 2014;28(4):453–65.CrossRefGoogle Scholar
  71. 71.
    Husted L, Jensen TK, Olsen SN, Mølbak L. Examination of equine glandular stomach lesions for bacteria, including Helicobacter spp. by fluorescence in situ hybridisation. BMC Microbiol. 2010;10(84):1–8.Google Scholar
  72. 72.
    Feller L, Lemmer J. Oral squamous cell carcinoma: epidemiology, clinical presentation and treatment. J Cancer Ther. 2012;3:263–8.CrossRefGoogle Scholar
  73. 73.
    Dematei A, Fernandes R, Soares R, Alves H, Richter J, Botelho MC. Angiogenesis in Schistosoma haematobium-associated urinary bladder cancer. Apmis. 2017;125(12):1056–62.CrossRefPubMedGoogle Scholar
  74. 74.
    Zhang X, Mosser D. Macrophage activation by endogenous danger signals. J Pathol. 2008;214(2):161–78.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17(4):359–65.CrossRefPubMedGoogle Scholar
  76. 76.
    Nukui T, Ehama R, Sakaguchi M, Sonegawa H, Katagiri C, Hibino T, et al. S100A8/A9, a key mediator for positive feedback growth stimulation of normal human keratinocytes. J Cell Biochem. 2008;104(2):453–64.CrossRefPubMedGoogle Scholar
  77. 77.
    Leclerc EFG, Weibel M, Heizmann CW, Galichet A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem. 2007;282:31317–31.CrossRefPubMedGoogle Scholar
  78. 78.
    Boyd JH, Kan B, Roberts H, Wang Y, Walley KR. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res. 2008;102(10):1239–46.CrossRefPubMedGoogle Scholar
  79. 79.
    Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, et al. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukocy Biol. 2008;83(6):1484–92.CrossRefGoogle Scholar
  80. 80.
    Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10(11):1349–55.CrossRefPubMedGoogle Scholar
  81. 81.
    Markowitz J, Carson WE. Review of S100A9 biology and its role in cancer. Biochim Biophys Acta (BBA) Rev Cancer. 2013;1835(1):100–9.CrossRefGoogle Scholar
  82. 82.
    Kerkhoff C, Sorg C, Tandon NN, Nacken W. Interaction of S100A8/S100A9—arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells. Biochemistry. 2001;40(1):241–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Kerkhoff C, Klempt M, Kaever V, Sorg C. The two calcium-binding proteins, S100A8 and S100A9, are involved in the metabolism of arachidonic acid in human neutrophils. J Biol Chem. 1999;274(46):32672–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Sopalla C, Leukert N, Sorg C, Kerkhoff C. Evidence for the involvement of the unique C-tail of S100A9 in the binding of arachidonic acid to the heterocomplex S100A8/A9. Biol Chem. 2002;383(12):1895–905.CrossRefPubMedGoogle Scholar
  85. 85.
    Lim SY, Raftery MJ, Goyette J, Hsu K, Geczy CL. Oxidative modifications of S100 proteins: functional regulation by redox. J Leukocy Biol. 2009;86(3):577–87.CrossRefGoogle Scholar
  86. 86.
    Kerkhoff C, Nacken W, Benedyk M, Dagher MC, Sopalla C, Doussiere J. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. FASEB J. 2005;19(3):467–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Benedyk M, Sopalla C, Nacken W, Bode G, Melkonyan H, Banfi B, et al. HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-κB activities. J Investig Dermatol. 2007;127(8):2001–11.CrossRefPubMedGoogle Scholar
  88. 88.
    Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9(2):133–48.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhong JM, Li J, Kang AD, Huang SQ, Liu WB, Zhang Y, et al. Protein S100-A8: a potential metastasis-associated protein for breast cancer determined via iTRAQ quantitative proteomic and clinicopathological analysis. Oncol Lett. 2018;15(4):5285–93.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun. 2012;4(1):31–40.CrossRefPubMedGoogle Scholar
  91. 91.
    Rajendran P, Chen YF, Chen YF, Chung LC, Tamilselvi S, Shen CY, et al. The multifaceted link between inflammation and human diseases. J Cell Physiol. 2018;233(9):6458–71.CrossRefPubMedGoogle Scholar
  92. 92.
    Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35(44):5735–45.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Cormier K, Harquail J, Ouellette RJ, Tessier PA, Guerrette R, Robichaud GA. Intracellular expression of inflammatory proteins S100A8 and S100A9 leads to epithelial-mesenchymal transition and attenuated aggressivity of breast cancer cells. Anti Cancer Agents Med Chem (Former Curr Med Chem Anti Cancer Agents). 2014;14(1):35–45.Google Scholar
  95. 95.
    Zheng Y, Hou J, Peng L, Zhang X, Jia L, Wang Xe, Wei S. H. Meng. The pro-apoptotic and pro-inflammatory effects of calprotectin on human periodontal ligament cells. PLoS One. 2014;9(10):e110421.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Ghavami S, Kerkhoff C, Chazin WJ, Kadkhoda K, Xiao W, Zuse A, et al. S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 2008;1783(2):297–311.Google Scholar
  97. 97.
    Najafi M, Alizadeh SA, Azad M, Farivar TN, Rajaei F, Sorouri KH, et al. Effect of calprotectin subunit S100A9 on the expression and methylation of OCLN in human melanoma cell line A-375. Turk J Biol. 2017;41:849–56.CrossRefGoogle Scholar
  98. 98.
    Sattari M, Pazhang Y, Imani M. Calprotectin induces cell death in human prostate cancer cell (LNCaP) through survivin protein alteration. Cell Biol Int. 2014;38(11):1311–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of TabrizTabrizIran
  2. 2.Cellular and Molecular Research CenterQazvin University of Medical SciencesQazvinIran

Personalised recommendations