Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Approximate n-idempotents and generalized Aluthge transform

  • 9 Accesses


Let p be a real number and let \(\varepsilon >0\). An operator \(T\in \mathbb {B}(\mathscr {H})\) is called a \((p,\varepsilon )\)-approximate n-idempotent if

$$\begin{aligned} \Vert T^nx- Tx\Vert \le \varepsilon \Vert x\Vert ^p\qquad (x\in \mathscr {H})\,. \end{aligned}$$

In this note, we remark that if \(p\ne 1\), then T is an n-idempotent. If \(p=1\), the operator T is a self-adjoint contraction satisfying \((-T)^n\ge 0\), and \(\varepsilon < \frac{n-1}{n\,\root n-1 \of {n}}\), then there is a self-adjoint n-idempotent S such that \(\Vert T-S\Vert < K\varepsilon \) for some constant \(K>0\). Among other results, we examine the lack of a similar result for the \((1,\varepsilon )\)-approximate generalized Aluthge transform.

This is a preview of subscription content, log in to check access.


  1. 1.

    Aluthge, A.: On \(p\)-hyponormal operators for \(0 < p < 1\). Integral Equ. Oper. Theory 13, 307–315 (1990)

  2. 2.

    Brown, A.: On a class of operators. Proc. Am. Math. Soc. 4, 723–728 (1953)

  3. 3.

    Chmieliński, J., Ilišević, D., Moslehian, M.S., Sadeghi, G.: Perturbation of the Wigner equation in inner product \(C^*\)-modules. J. Math. Phys. 49(3), 033519 (2008). 8 pp

  4. 4.

    Furuta, T.: Invitation to Linear Pperators. From Matrices to Bounded Linear Operators on a Hilbert Space. Taylor & Francis Ltd, London (2001)

  5. 5.

    Halmos, P.R.: A Hilbert Space Problem Book. Graduate Texts in Mathematics, 19. Encyclopedia of Mathematics and its Applications, vol. 17, Second edn. Springer, New York (1982)

  6. 6.

    Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27, 222–224 (1941)

  7. 7.

    Ito, I., Yamazaki, T.: Relations between two inequalities \((B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}}\ge B^r\) and \(A^p\ge (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{p+r}}\) and their applications. Integral Equ. Oper. Theory 44(4), 442–450 (2002)

  8. 8.

    Jarosz, K.: Perturbations of Banach algebras. Lecture Notes in Mathematics, vol. 1120. Springer, Berlin (1985)

  9. 9.

    Jung, I.B., Ko, E., Pearcy, C.: Aluthge transforms of operators. Integral Equ. Oper. Theory 37(4), 437–448 (2000)

  10. 10.

    Maher, P., Moslehian, M.S.: More on approximate operators. Cubo 14(1), 111–117 (2012)

  11. 11.

    Mirzavaziri, M., Miura, T., Moslehian, M.S.: Approximate unitaries in \(\cal{B}(H)\). East J. Approx. 16(2), 147–151 (2010)

  12. 12.

    Miura, T., Uchiyama, A., Oka, H., Hirasawa, G., Takahasi, S.-E., Niwa, N.: A perturbation of normal operators on a Hilbert space. Nonlinear Funct. Anal. Appl. 13(2), 291–297 (2008)

  13. 13.

    Oloomi, A., Radjabalipour, M.: Operators with normal Aluthge transforms. C. R. Math. Acad. Sci. Paris 350(5–6), 263–266 (2012)

  14. 14.

    Pedersen, G.K.: Unitary extensions and polar decompositions in a \(C^\ast \)-algebra. J. Oper. Theory 17(2), 357–364 (1987)

  15. 15.

    Ulam, S.M.: Problems in Modern Mathematics. Chapter VI, Science edn. Wiley, New York (1964)

  16. 16.

    Zhu, L., Pan, W., Huang, Q., Yang, S.: On the perturbation of outer inverses of linear operators in Banach spaces. Ann. Funct. Anal. 9(3), 344–353 (2018)

Download references


The author would like to sincerely thank Professor Takeaki Yamazaki and the referee for their useful comments. This research is supported by a Grant from Ferdowsi University of Mashhad (No. 2/51506).

Author information

Correspondence to Mohammad Sal Moslehian.

Additional information

Dedicated to Professor Asadollah Niknam on his 70th birthday with respect and affection.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moslehian, M.S. Approximate n-idempotents and generalized Aluthge transform. Aequat. Math. (2020). https://doi.org/10.1007/s00010-020-00713-6

Download citation


  • Generalized Aluthge transform
  • n-idempotent
  • Quasinormal operator
  • Stability

Mathematics Subject Classification

  • 47A55
  • 39B82
  • 47B15