Aequationes mathematicae

, Volume 93, Issue 6, pp 1085–1109 | Cite as

The variety of domination games

  • Boštjan Brešar
  • Csilla Bujtás
  • Tanja Gologranc
  • Sandi KlavžarEmail author
  • Gašper Košmrlj
  • Tilen Marc
  • Balázs Patkós
  • Zsolt Tuza
  • Máté Vizer


Domination game (Brešar et al. in SIAM J Discrete Math 24:979–991, 2010) and total domination game (Henning et al. in Graphs Comb 31:1453–1462 (2015) are by now well established games played on graphs by two players, named Dominator and Staller. In this paper, Z-domination game, L-domination game, and LL-domination game are introduced as natural companions of the standard domination games. Versions of the Continuation Principle are proved for the new games. It is proved that in each of these games the outcome of the game, which is a corresponding graph invariant, differs by at most one depending whether Dominator or Staller starts the game. The hierarchy of the five domination games is established. The invariants are also bounded with respect to the (total) domination number and to the order of a graph. Values of the three new invariants are determined for paths up to a small constant independent from the length of a path. Several open problems and a conjecture are listed. The latter asserts that the L-domination game number is not greater than 6 / 7 of the order of a graph.


Domination game Total domination game L-domination game Z-domination game Grundy domination number 

Mathematics Subject Classification

05C69 05C57 91A43 



Work supported by the Slovenian Research Agency (research core funding P1-0297, Projects J1-9109, N1-0095, N1-0108, J1-1693), by the National Research, Development and Innovation Office—NKFIH under the Grants SNN 129364, K 116769 and KH130371, by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences and by the New National Excellence Program under the Grant Number ÚNKP-19-4-BME-287.


  1. 1.
    Brešar, B., Bujtás, C., Gologranc, T., Klavžar, S., Košmrlj, G., Patkós, B., Tuza, Zs., Vizer, M.: Grundy dominating sequences and zero forcing sets. Discrete Optim. 26, 66–77 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brešar, B., Dorbec, P., Klavžar, S., Košmrlj, G.: How long can one bluff in the domination game? Discuss. Math. Graph Theory 37, 337–352 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brešar, B., Dorbec, P., Klavžar, S., Košmrlj, G., Renault, G.: Complexity of the game domination problem. Theor. Comput. Sci. 648, 1–7 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brešar, B., Gologranc, T., Milanič, M., Rall, D.F., Rizzi, R.: Dominating sequences in graphs. Discrete Math. 336, 22–36 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brešar, B., Henning, M.A., Rall, D.F.: Total dominating sequences in graphs. Discrete Math. 339, 1665–1676 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brešar, B., Klavžar, S., Košmrlj, G., Rall, D.F.: Domination game: extremal families of graphs for the \(3/5\)-conjectures. Discrete Appl. Math. 161, 1308–1316 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brešar, B., Klavžar, S., Rall, D.F.: Domination game and an imagination strategy. SIAM J. Discrete Math. 24, 979–991 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bujtás, Cs: Domination game on forests. Discrete Math. 338, 2220–2228 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bujtás, C.: On the game domination number of graphs with given minimum degree. Electron. J. Comb. 22, 3.29 (2015)MathSciNetGoogle Scholar
  10. 10.
    Bujtás, C.: On the game total domination number. Graphs Comb. 34, 415–425 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bujtás, C., Henning, M.A., Tuza, Zs.: Transversal game on hypergraphs and the \(\frac{3}{4}\)-conjecture on the total domination game. SIAM J. Discrete Math. 30, 1830–1847 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dorbec, P., Henning, M.A.: Game total domination for cycles and paths. Discrete Appl. Math. 208, 7–18 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dorbec, P., Košmrlj, G., Renault, G.: The domination game played on unions of graphs. Discrete Math. 338, 71–79 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Henning, M.A., Kinnersley, W.B.: Domination game: a proof of the \(3/5\)-conjecture for graphs with minimum degree at least two. SIAM J. Discrete Math. 30, 20–35 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Henning, M.A., Klavžar, S.: Infinite families of circular and Möbius ladders that are total domination game critical. Bull. Malays. Math. Sci. Soc. 41, 2141–2149 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Henning, M.A., Klavžar, S., Rall, D.F.: Total version of the domination game. Graphs Comb. 31, 1453–1462 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Henning, M.A., Klavžar, S., Rall, D.F.: The \(4/5\) upper bound on the game total domination number. Combinatorica 37, 223–251 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Henning, M.A., Klavžar, S., Rall, D.F.: Game total domination critical graphs. Discrete Appl. Math. 250, 28–37 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Henning, M.A., Löwenstein, C.: Domination game: extremal families for the \(3/5\)-conjecture for forests. Discuss. Math. Graph Theory 37, 369–381 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Henning, M.A., Rall, D.F.: Progress towards the total domination game \(\frac{3}{4}\)-conjecture. Discrete Math. 339, 2620–2627 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Henning, M.A., Rall, D.F.: Trees with equal total domination and game total domination numbers. Discrete Appl. Math. 226, 58–70 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    James, T., Dorbec, P., Vijayakumar, A.: Further progress on the heredity of the game domination number. Lecture Notes in Comput. Sci. 10398, 435–444 (2017)Google Scholar
  23. 23.
    James, T., Klavžar, S., Vijayakumar, A.: The domination game on split graphs. Bull. Aust. Math. Soc. 99, 327–337 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kinnersley, W.B., West, D.B., Zamani, R.: Game domination for grid-like graphs, manuscript (2012)Google Scholar
  25. 25.
    Kinnersley, W.B., West, D.B., Zamani, R.: Extremal problems for game domination number. SIAM J. Discrete Math. 27, 2090–2107 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Klavžar, S., Košmrlj, G., Schmidt, S.: On graphs with small game domination number. Appl. Anal. Discrete Math. 10, 30–45 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Košmrlj, G.: Domination game on paths and cycles. ARS Math. Contemp. 13, 125–136 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nadjafi-Arani, M.J., Siggers, M., Soltani, H.: Characterisation of forests with trivial game domination numbers. J. Comb. Optim. 32, 800–811 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schmidt, S.: The 3/5-conjecture for weakly \(S(K_{1,3})\)-free forests. Discrete Math. 339, 2767–2774 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Xu, K., Li, X.: On domination game stable graphs and domination game edge-critical graphs. Discrete Appl. Math. 250, 47–56 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Xu, K., Li, X., Klavžar, S.: On graphs with largest possible game domination number. Discrete Math. 341, 1768–1777 (2018) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  2. 2.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  3. 3.Faculty of Information TechnologyUniversity of PannoniaVeszprémHungary
  4. 4.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  5. 5.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary
  6. 6.Abelium R&DLjubljanaSlovenia

Personalised recommendations