Extension problem for principles of equivalent utility

  • Jacek ChudziakEmail author
Open Access


We prove that, under the Cumulative Prospect Theory, every principle of equivalent utility, defined on a family of ternary risks, possesses a unique extension to the family of all risks.


Principle of equivalent utility Extension Insurance premium General linear equation 

Mathematics Subject Classification

39B12 39B82 91B16 



  1. 1.
    Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., Nesbitt, C.J.: Actuarial Mathematics. The Society of Actuaries, Itasca (1986)zbMATHGoogle Scholar
  2. 2.
    Bühlmann, H.: Mathematical Models in Risk Theory. Springer, New York (1970)zbMATHGoogle Scholar
  3. 3.
    Chudziak, J.: On functional equations stemming from actuarial mathematics. Aequ. Math. 92, 471–486 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chudziak, J.: On existence and uniqueness of the principle of equivalent utility under Cumulative Prospect Theory. Insur. Math. Econ. 79, 243–246 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chudziak, J.: On applications of inequalities for quasideviation means in actuarial mathematics. Math. Inequal. Appl. 21, 601–610 (2018)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chudziak, M., Sobek, B.: Generalized Pexider equation on an open domain. Results Math. 71, 1359–1372 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Heilpern, S.: A rank-dependent generalization of zero utility principle. Insur. Math. Econ. 33, 67–73 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kaas, R., Goovaerts, M., Dhaene, J., Denuit, M.: Modern Actuarial Risk Theory. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kałuszka, M., Krzeszowiec, M.: Pricing insurance contracts under Cumulative Prospect Theory. Insur. Math. Econ. 50, 159–166 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kałuszka, M., Krzeszowiec, M.: On iterative premium calculation principles under Cumulative Prospect Theory. Insur. Math. Econ. 52, 435–440 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, 2nd edn. Birkhäuser, Berlin (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Rachev, S.T., Klebanov, L.B., Stoyanov, S.V., Fabozzi, F.J.: The Methods of Distances in the Theory of Probability and Statistics. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Radó, F., Baker, J.A.: Pexider’s equation and aggregation of allocations. Aequ. Math. 32, 227–239 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, New York (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszowPoland

Personalised recommendations