Advertisement

Some results for conjugate equations

  • Kazuki OkamuraEmail author
Article

Abstract

In this paper we consider a class of conjugate equations, which generalizes de Rham’s functional equations. We give sufficient conditions for the existence and uniqueness of solutions under two different series of assumptions. We consider regularity of solutions. In our framework, two iterated function systems are associated with a series of conjugate equations. We state local regularity by using the invariant measures of the two iterated function systems with a common probability vector. We give several examples, especially an example such that infinitely many solutions exists, and a new class of fractal functions on the two-dimensional standard Sierpiński gasket which are not harmonic functions or fractal interpolation functions. We also consider a certain kind of stability.

Keywords

Conjugate equations De Rham’s functional equations Iterated function systems 

Mathematics Subject Classification

39B72 39B12 28A80 26A30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author was supported by JSPS KAKENHI Grant-in-Aid for JSPS Fellows (16J04213) and for Research activity Start-up (18H05830). This work was also supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

  1. 1.
    Allaart, P.: Differentiability and Hölder spectra of a class of self-affine functions. Preprint, arXiv:1707.07376
  2. 2.
    Ambrosio, L., Di Marino, S.: Equivalent definitions of BV space and of total variation on metric measure spaces. J. Funct. Anal. 266, 4150–4188 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arbieto, A., Junqueira, A., Santiago, B.: On weakly hyperbolic iterated function systems. Bull. Braz. Math. Soc. (N.S.) 48, 111–140 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barany, B., Kiss, G., Kolossvary, I.: Pointwise regularity of parametrized affine zipper fractal curves. Nonlinearity 31, 1705–1733 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Browder, F.: On the convergence of successive approximations for nonlinear functional equations. Indag. Math. 30, 27–35 (1968)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Celik, D., Kocak, S., Ozdemir, Y.: Fractal interpolation on the Sierpiński gasket. J. Math. Anal. Appl. 337, 343–347 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Denjoy, A.: Sur une fonction réelle de Minkowski. J. Math. Pures Appl. 17, 105–151 (1938)zbMATHGoogle Scholar
  8. 8.
    Falconer, K.: Fractal Geometry, 3rd edn. Wiley, Hoboken (2014)zbMATHGoogle Scholar
  9. 9.
    Fan, A.H.: Ergodicity, unidimensionality and multifractality of self-similar measures. Kyushu J. Math. 50, 541–574 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fan, A.H., Lau, K.-S.: Iterated function system and Ruelle operator. J. Math. Anal. Appl. 231, 319–344 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Georgescu, F., Miculescu, R., Mihail, A.: Invariant measures of Markov operators associated to iterated function systems consisting of phi-max-contractions with probabilities. Preprint, arXiv:1705.04875
  12. 12.
    Girgensohn, R., Kairies, H.-H., Zhang, W.: Regular and irregular solutions of a system of functional equations. Aequationes Math. 72, 27–40 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hata, M.: On the structure of self-similar sets. Jpn. J. Appl. Math. 2, 381–414 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hata, M., Yamaguti, M.: The Takagi function and its generalization. Jpn. J. Appl. Math. 1, 183–199 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jachymski, J.R.: Equivalence of some contractivity properties over metrical structures. Proc. Am. Math. Soc. 125, 2327–2335 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jordan, T., Sahlsten, T.: Fourier transforms of Gibbs measures for the Gauss map. Math. Ann. 364, 983–1023 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kesseböhmer, M., Stratmann, B.O.: Fractal analysis for sets of non-differentiability of Minkowski’s question mark function. J. Number Theory 128, 2663–2686 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations, Encyclopedia of Mathematics and Its Applications, vol. 32. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  20. 20.
    Mantica, G., Totik, V.: Regularity of Minkowski’s question mark measure, its inverse and a class of IFS invariant measures. J. Lond. Math. Soc.  https://doi.org/10.1112/jlms.12197
  21. 21.
    Matkowski, J.: Integrable Solutions of Functional Equations. Dissertationes Mathematicae (Rozprawy Matematyczne) 127 (1975)Google Scholar
  22. 22.
    Minkowski, H.: Zur Geometrie der Zahlen, Verhandlungen des III, pp. 164–173. Internationalen Mathematiker-Kongresses, Heidelberg (1904)Google Scholar
  23. 23.
    Miranda Jr., M.: Functions of bounded variation on “good” metric spaces (9). J. Math. Pures Appl. 82, 975–1004 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mutamoto, K., Sekiguchi, T.: Directed networks and self-similar systems. PreprintGoogle Scholar
  25. 25.
    Okamura, K.: Singularity results for functional equations driven by linear fractional transformations. J. Theoret. Probab. 27, 1316–1328 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Okamura, K.: On the range of self-interacting random walks on an integer interval. Tsukuba J. Math. 38, 123–135 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Okamura, K.: On regularity for de Rham’s functional equations. Aequationes Math. 90, 1071–1085 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Okamura, K.: Self-similar measures for iterated function systems driven by weak contractions. Proc. Jpn. Acad. Ser. A Math. Sci 94, 31–35 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    de Rham, G.: Sur quelques courbes définies par des équations fonctionalles. Univ. e Politec. Torino. Rend. Sem. Mat. 16, 101–113 (1957)MathSciNetGoogle Scholar
  30. 30.
    Ri, S.-G., Ruan, H.-J.: Some properties of fractal interpolation functions on Sierpiński gasket. J. Math. Anal. Appl. 380, 313–322 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ruan, H.-J.: Fractal interpolation functions on post critically finite self-similar sets. Fractals 18(1), 119–125 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Salem, R.: On some singular monotonic functions which are strictly increasing. Trans. Am. Math. Soc. 53, 427–439 (1943)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Serpa, C., Buescu, J.: Piecewise expanding maps and conjugacy equations. In: Nonlinear Maps and Their Applications, vol. 112, pp. 193–202. Springer, New York (2015)Google Scholar
  34. 34.
    Serpa, C., Buescu, J.: Explicitly defined fractal interpolation functions with variable parameters. Chaos Solitons Fractals 75, 76–83 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Serpa, C., Buescu, J.: Non-uniqueness and exotic solutions of conjugacy equations. J. Differ. Equ. Appl. 21, 1147–1162 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Serpa, C., Buescu, J.: Constructive solutions for systems of iterative functional equations. Constr. Approx. 45, 273–299 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Shi, Y.-G., Yilei, T.: On conjugacies between asymmetric Bernoulli shifts. J. Math. Anal. Appl. 434, 209–221 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sumi, H.: Random dynamics of polynomials and devil’s-staircase-like functions in the complex plane. Appl. Math. Comput. 187, 489–500 (2007)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Viader, P., Paradis, J., Bibiloni, L.: A new light on Minkowski’s\(?(x)\) function. J. Number Theory 73, 212–227 (1998)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zdun, M.C.: On conjugacy of some systems of functions. Aequationes Math. 61, 239–254 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of General EducationShinshu UniversityMatsumotoJapan

Personalised recommendations