Advertisement

Aequationes mathematicae

, Volume 92, Issue 5, pp 949–961 | Cite as

Conics in Minkowski geometries

  • Árpád Kurusa
Article
  • 28 Downloads

Abstract

Euclidean geometry is the only Minkowski geometry in which either there is a centrally symmetric, or a quadratic conic, or there is a conical ellipsoid or hyperboloid.

Keywords

Conics Minkowski geometry Projective metric 

Mathematics Subject Classification

53A35 51M09 52A20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author is grateful to József Kozma for discussing some parts of this paper.

References

  1. 1.
    Busemann, H., Kelly, P.J.: Projective Geometries and Projective Metrics. Academic Press, New York (1953)zbMATHGoogle Scholar
  2. 2.
    Busemann, H.: The Geometry of Geodesics. Academic Press, New York (1955)zbMATHGoogle Scholar
  3. 3.
    Cheng, S.S., Li, W.: Analytic Solutions of Functional Equations. World Scientific, New Jersey (2008)CrossRefGoogle Scholar
  4. 4.
    Ghandehari, M.A.: Heron’s problem in the Minkowski plane. Technical Report of Department of Mathematics at the University of Texas at Arlington, vol. 306. http://hdl.handle.net/10106/2500 (1997)
  5. 5.
    Horváth, Á.G., Martini, H.: Conics in normed planes. Extracta Math. 26(1), 29–43. arXiv:1102.3008 (2011)
  6. 6.
    Tamássy, L., Bélteky, K.: On the coincidence of two kinds of ellipses in Minkowskian and Finsler planes. Publ. Math. Debr. 31(3–4), 157–161 (1984)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Tamássy, L., Bélteky, K.: On the coincidence of two kinds of ellipses in Riemannian and in Finsler spaces. Coll. Math. Soc. J. Bolyai 46, 1193–1200 (1988)MathSciNetzbMATHGoogle Scholar
  8. 8.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations