Disjointness preserving maps between vector-valued group algebras
Article
First Online:
Received:
Revised:
- 5 Downloads
Abstract
Let G be a locally compact abelian group and B be a commutative Banach algebra. Let \(L^{1}(G, B)\) be the Banach algebra of B-valued Bochner integrable functions on G. In this paper we provide a complete description of continuous disjointness preserving maps on \(L^{1}(G, B)\)-algebras based on a scarcely used tool: the vector-valued Fourier transform. We also present necessary and sufficient conditions for these operators to be compact.
Keywords
Locally compact abelian group Vector-valued group algebras Disjointness preserving mappingsMathematics Subject Classification
Primary 47B38 Secondary 43A20 43A22 43A25Preview
Unable to display preview. Download preview PDF.
References
- 1.Abramovich, Y.: Multiplicative representation of disjointness preserving operators. Indag. Math. 45, 265–279 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 2.Abramovich, Y., Veksler, A.I., Koldunov, A.V.: On operators preserving disjointness. Soviet Math. Dokl. 248, 1033–1036 (1983)MATHGoogle Scholar
- 3.Araujo, J.: Separating maps and linear isometries between some spaces of continuous functions. J. Math. Anal. Appl. 226, 23–39 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 4.Arendt, W.: Spectral properties of Lamperti operators. Indiana Univ. Math. J. 32, 199–215 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 5.Arendt, W., Hart, D.R.: The spectrum of quasi-invertible disjointness preserving operators. J. Funct. Anal. 68, 149–167 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 6.Chan, J.T.: Operators with disjoint support property. J. Oper. Theory 24(2), 383–391 (1990)MathSciNetMATHGoogle Scholar
- 7.de Pagter, B.: A note on disjointness preserving operators. Proc. Am. Math. Soc. 90, 543–549 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 8.Font, J.J., Hernández, S.: Separating maps between locally compact spaces. Arch. Math. (Basel) 63, 158–165 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 9.Font, J.J., Hernández, S.: Automatic continuity and representation of certain linear isomorphisms between group algebras. Indag. Math. 6(4), 397–409 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 10.Gau, H.-L., Jeang, J.-S., Wong, N.-C.: Biseparating linear maps between continuous vector-valued function spaces. J. Aust. Math. Soc. 74, 101–109 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 11.Hausner, A.: On a homomorphism between generalized group algebras. Bull. Am. Math. Soc. 67, 138–141 (1961)MathSciNetCrossRefMATHGoogle Scholar
- 12.Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis II. Springer, New York (1970)MATHGoogle Scholar
- 13.Huijsmans, C., de Pagter, B.: Invertible disjointness preserving operators. Proc. Edinb. Math. Soc. 37, 125–132 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 14.Honary, T.G., Nikou, A., Sanatpour, A.H.: Disjointness preserving linear operators between Banach algebras of vector-valued functions. Banach J. Math. Anal. 8(2), 93–106 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 15.Jamison, J.E., Rajagopalan, M.: Weighted composition operator on \(C(X, E)\). J. Oper. Theory 19(2), 307–317 (1988)MATHGoogle Scholar
- 16.Jarosz, K.: Automatic continuity of separating linear isomorphisms. Canad. Math. Bull. 33(2), 139–144 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 17.Laursen, K.B., Neumann, M.: Introduction to Local Spectral Theory. Oxford University Press, Oxford (2000)MATHGoogle Scholar
- 18.Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
- 19.Munkres, J.R.: Topology: a First Course. Prentice-Hall Inc, Englewood Cliffs, N.J. (1975)MATHGoogle Scholar
- 20.Rudin, W.: Fourier Analysis on Groups. Wiley-Interscience, New York (1962)MATHGoogle Scholar
- 21.Ruess, W.M., Summers, W.H.: Compactness in spaces of vector-valued continuous functions and asymptotic almost periodicity. Math. Nachr. 135, 7–33 (1988)MathSciNetCrossRefMATHGoogle Scholar
- 22.Tewari, U.B., Dutta, M., Vaidya, D.P.: Multipliers of group algebras of vector-valued functions. Proc. Am. Math. Soc. 81, 223–229 (1981)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018