Groups with a ternary equivalence relation



We consider in a group \((G,\cdot )\) the ternary relation
$$\begin{aligned} \kappa := \{(\alpha , \beta , \gamma ) \in G^3 \ | \ \alpha \cdot \beta ^{-1} \cdot \gamma = \gamma \cdot \beta ^{-1} \cdot \alpha \} \end{aligned}$$
and show that \(\kappa \) is a ternary equivalence relation if and only if the set \( \mathfrak Z \) of centralizers of the group G forms a fibration of G (cf. Theorems 2, 3). Therefore G can be provided with an incidence structure
$$\begin{aligned} \mathfrak G:= \{\gamma \cdot Z \ | \ \gamma \in G , Z \in \mathfrak Z(G) \}. \end{aligned}$$
We study the automorphism group of \((G,\kappa )\), i.e. all permutations \(\varphi \) of the set G such that \( (\alpha , \beta , \gamma ) \in \kappa \) implies \((\varphi (\alpha ),\varphi (\beta ),\varphi (\gamma ))\in \kappa \). We show \(\mathrm{Aut}(G,\kappa )=\mathrm{Aut}(G,\mathfrak G)\), \(\mathrm{Aut} (G,\cdot ) \subseteq \mathrm{Aut}(G,\kappa )\) and if \( \varphi \in \mathrm{Aut}(G,\kappa )\) with \(\varphi (1)=1\) and \(\varphi (\xi ^{-1})= (\varphi (\xi ))^{-1}\) for all \(\xi \in G\) then \(\varphi \) is an automorphism of \((G,\cdot )\). This allows us to prove a representation theorem of \(\mathrm{Aut}(G,\kappa )\) (cf. Theorem 6) and that for \(\alpha \in G \) the maps
$$\begin{aligned} \tilde{\alpha }\ : \ G \rightarrow G;~ \xi \mapsto \alpha \cdot \xi ^{-1} \cdot \alpha \end{aligned}$$
of the corresponding reflection structure \((G, \widetilde{G})\) (with \( \tilde{G} := \{\tilde{\gamma }\ | \ \gamma \in G \}\)) are point reflections. If \((G ,\cdot )\) is uniquely 2-divisible and if for \(\alpha \in G\), \(\alpha ^{1\over 2}\) denotes the unique solution of \(\xi ^2=\alpha \) then with \(\alpha \odot \beta := \alpha ^{1\over 2} \cdot \beta \cdot \alpha ^{1\over 2}\), the pair \((G,\odot )\) is a K-loop (cf. Theorem 5).


Group with collinearity Ternary equivalence relation Kinematic fibration 

Mathematics Subject Classification

Primary 51M10 Secondary 51G05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Berlin (1973)CrossRefMATHGoogle Scholar
  2. 2.
    Karzel, H., Kroll, H.-J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)MATHGoogle Scholar
  3. 3.
    Kiechle, H.: Theory of K-Loops. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Karzel, H., Pianta, S.: Binary operations derived from symmetric permutation sets and applications to absolute geometry. Disc. Math. 308, 415–421 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 6.
    Karzel, H.: Kinematic spaces. Ist. Naz. Alta Mat. Symp. Math. XI, 413–439 (1973)MathSciNetMATHGoogle Scholar
  6. 7.
    Rainich, G.Y.: Ternary relations in geometry and algebra. Mich. Math. J. 1(2), 97–111 (1952)MathSciNetCrossRefMATHGoogle Scholar
  7. 8.
    Szmielew, W.: On n-ary equivalence relations and their application to geometry. Instytut Matematyczny Polskiej Akademi Nauk, Warsaw (1981)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenMunichGermany
  2. 2.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran

Personalised recommendations