Advertisement

The Existence of Solution for k-Dimensional System of Langevin Hadamard-Type Fractional Differential Inclusions with 2k Different Fractional Orders

  • 46 Accesses

Abstract

In this paper, we investigate the existence of solution for k-dimensional system of Langevin Hadamard-type fractional differential inclusions with 2k different fractional orders. Our investigate relies on fixed point theorems and covers the cases when the right-hand side of the inclusion is sum of two multifunctions. Also, we provide an example to illustrate our main results.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    Agarwal, R., Ahmad, B.: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Comput. Math. Appl. 62, 1200–1214 (2011). https://doi.org/10.1016/j.camwa.2011.03.001

  2. 2.

    Agarwal, R., Baleanu, D., Hedayati, V., Rezapour, S.: Two fractional derivative inclusion problems via integral boundary condition. Appl. Math. Comput. 257, 205–212 (2015). https://doi.org/10.1016/j.amc.2014.10.082

  3. 3.

    Agarwal, R., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions invovling riemann-liouville fractional derivative. Adv. Differ. Equ. 2009, 981728 (2009). https://doi.org/10.1155/2009/981728

  4. 4.

    Agarwal, R., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010). https://doi.org/10.1007/s10440-008-9356-6

  5. 5.

    Ahmad, B., Ntouyas, S.: Boundary value problem for fractional differential inclusions with four-point integral boundary conditions. Surv. Math. Appl. 6, 175–193 (2011) http://www.utgjiu.ro/math/sma/v06/a13.html

  6. 6.

    Ahmad, B., Ntouyas, S., Alsedi, A.: On fractional differential inclusions with with anti-periodic type integral boundary conditions. Bound. Value Probl. 2013, 82 (2013). https://doi.org/10.1186/1687-2770-2013-82

  7. 7.

    Ahmad, B., Nieto, J.: Solvability of nonlinear langevin equation involving two fractional orders with dirichlet boundary conditions. Int. J. Differ. Equ. 2010, 10 (2010). https://doi.org/10.1155/2010/649486

  8. 8.

    Ahmad, B., Nieto, J., Alsaedi, A., El-Shahed, M.: A study of nonlinear langevin equation involving two fractional orders in different interavels. Nonlinear Anal. Real World Appl. 13(2), 599–606 (2012). https://doi.org/10.1016/j.nonrwa.2011.07.052

  9. 9.

    Ahmad, B., Nieto, J., Alsaedi, A.: A nonlocal three-point inclusion problem of Langevin equation with two different fractional orders. Adv. Differ. Equ. 2012, 54 (2012). http://www.advancesindifferenceequations.com/content/2012/1/54

  10. 10.

    Ahmad, B., Ntouyas, S., Alsaedi, A.: Existence results for langevin fractional differential inclusions involving two fractional orders with four-point multiterm fractional integral boundary conditions. Abstr. Appl. Anal. 2013, 17 (2013). https://doi.org/10.1155/2013/869837

  11. 11.

    Ahmad, B., Ntouyas, S., Alsaedi, A.: New results for boundary value problems of Hadamard-type fractional differential inclusions and integral boundary conditions, Bound. Value Probl. 2013, 275 (2013). http://www.boundaryvalueproblems.com/content/2013/1/275

  12. 12.

    Alsaedi, A., Ntouyas, S., Ahmad, B.: Existence of solutions for fractional differential inclusions with separated boundary conditions in banach spaces. Abstr. Appl. Anal. 2013, 17 (2013)

  13. 13.

    Aubin, J., Ceuina, A.: Differential Inclusions: Set-valued Maps and Viability Theory. Springer, Berlin (1984)

  14. 14.

    Baleanu, D., Agarwal, R., Mohammadi, H., Rezapour, S.: Some existence results for a nonlinear fractional differential equation on partially ordered banach spaces. Bound. Value Probl 2013, 112 (2013). https://doi.org/10.1186/1687-2770-2013-112

  15. 15.

    Baleanu, D., Mohammadi, H., Rezapour, S.: The existence of solutions for a nonlinear mixed problem of singular fractional differential equations. Adv. Differ. Equ. 2013, 359 (2013). https://doi.org/10.1186/1687-1847-2013-359

  16. 16.

    Baleanu, D., Mohammadi, H., Rezapour, S.: Positive solutions of a boundary value problem for nonlinear fractional differential equations. Abstract Appl. Anal. Spec. Issue 2008, 7 (2012). https://doi.org/10.1155/2012/837437

  17. 17.

    Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371 (2013). https://doi.org/10.1098/rsta.2012.0144

  18. 18.

    Baleanu, D., Nazemi, S., Rezapour, S.: The existence of positive solutions for a new coupled system of multiterm singular fractional integrodifferential boundary value problems. Abstract Appl. Anal. 2013, 15 (2013). https://doi.org/10.1155/2013/368659

  19. 19.

    Baleanu, D., Nazemi, S., Rezapour, S.: Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations. Adv. Differ. Equ. 2013, 368 (2013). https://doi.org/10.1186/1687-1847-2013-368

  20. 20.

    Baleanu, D., Nazemi, S., Rezapour, S.: Attractivity for a \(k\)-dimensional system of fractional functional differential equations and global attractivity for a \(k\)-dimensional system of nonlinear fractional differential equations. J. Inequal. Appl. 2014, 31 (2014). https://doi.org/10.1186/1029-242X-2014-31

  21. 21.

    Benchohra, M., Hamidi, N.: Fractional order differential inclusions on the half-line. Surv. Math. Appl. 5, 99–111 (2010)

  22. 22.

    Benchohra, M., Ntouyas, S.: On second order differential inclusions with periodic boundary conditions. Acta Math. Univ. Com. New Ser. 69(2), 173–181 (2000). http://eudml.org/doc/121312

  23. 23.

    Berinde, V., Pacurar, M.: The role of the pompeiu-hausdorff metric in fixed point theory. Creat. Math. Inf. 22(2), 143–150 (2013)

  24. 24.

    Bragdi, M., Debbouche, A., Baleanu, D.: Existence of solutions for fractional differential inclusions with separated boundary conditions in banach space. Adv. Math. Phys. (2013). https://doi.org/10.1155/2013/426061

  25. 25.

    Chai, G.: Existence results for anti-periodic boundary value problems of fractional differential equations. Adv. Differ. Equ. 2013, 53 (2013). http://www.advancesindifferenceequations.com/content/2013/1/53

  26. 26.

    Coffey, W., Kalmykov, Y., Wadorn, J.: The Langevin Equation, 2nd edn. World Scientific, Singapore (2004)

  27. 27.

    Covitz, H., Nadler, S.: Multivalued contraction mappings in generalized metric spaces. Isr. J. Math. 8, 5–11 (1970)

  28. 28.

    Deimling, K.: Multi-valued Differential Equations. Walter de Gruyter, Berlin (1992)

  29. 29.

    Dhage, B.: Multi-valued operators and fixed point theorems in banach algebras. Taiwan. J. Math. 10(4), 1025–1045 (2006)

  30. 30.

    El-Sayed, A., Ibrahim, A.: Multivalued fractional differential equations. Appl. Math. Comput. 68, 15–25 (1995). https://doi.org/10.1016/0096-3003(94)00080-N

  31. 31.

    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations, Mathematics Studies. Elsevier Science, North-Holland (2006)

  32. 32.

    Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht (1991)

  33. 33.

    Lasota, A., Opial, Z.: An application of the kakutani-ky fan theorem in the theory of ordinary differential equations. Bulletin ĹAcadémie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques 13, 781–786 (1965)

  34. 34.

    Liu, X., Liu, Z.: Existence result for fractional differential inclusions with multivalued term depending on lower-order derivative. Abstract Appl. Anal. 2012, 24 (2012). https://doi.org/10.1155/2012/423796

  35. 35.

    Miller, K., Ross, B.: An introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

  36. 36.

    Nieto, J., Ouahab, A., Prakash, P.: Extremal solutions and relaxation problems for fractional differential inclusions. Abstract Appl. Anal. 2013, 9 (2013). https://doi.org/10.1155/2013/292643

  37. 37.

    Ouahab, A.: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. Theory Methods Appl. 69, 3877–3896 (2008). https://doi.org/10.1016/j.na.2007.10.021

  38. 38.

    Podlubny, I.: Fract. Differ. Equ. Academic Press, San Diego (1999)

  39. 39.

    Rezapour, S., Hedayati, V.: On a caputo fractional differential inclusion with integral boundary condition for convex-compact and nonconvex-compact valued multifunctions. Kragujev. J. Math. 41(1), 143–158 (2017). https://doi.org/10.5937/KgJMath1701143R

  40. 40.

    Wang, J., Ibrahim, A.: Existence and controllability results for nonlocal fractional impulsive differential inclusions in banach spaces. J. Funct. Sp. Appl. 2013, 16 (2013). https://doi.org/10.1155/2013/518306

  41. 41.

    Wang, G., Zhang, L., Song, G.: Boundary value problem of a nonlinear langevin equation with two different fractional orders and impulses, Fixed Point Theory Appl. 2012, 200 (2012). http://www.fixedpointtheoryandapplications.com/content/2012/1/200

  42. 42.

    Wax, N.: Selected Papers on Noice and Stochastic Processes. Dover, New York (1954)

Download references

Author information

Correspondence to Mohammad Esmael Samei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samei, M.E., Hedayati, V. & Khalilzadeh Ranjbar, G. The Existence of Solution for k-Dimensional System of Langevin Hadamard-Type Fractional Differential Inclusions with 2k Different Fractional Orders. Mediterr. J. Math. 17, 37 (2020). https://doi.org/10.1007/s00009-019-1471-2

Download citation

Keywords

  • k-dimensional system
  • Langevin equation
  • Hadamard-type fractional differential

Mathematics Subject Classification

  • Primary: 26A33
  • Secondary: 34A08
  • 34K37