A Lorenz Model for Almost Compressible Fluids

  • Antonino De Martino
  • Arianna PasseriniEmail author


Starting from the almost compressible 2-D Oberbeck–Boussi nesq system, characterized by an extra buoyancy term which is pressure-dependent, we write the corresponding Lorenz system and observe a larger instability with respect to the classical model in which the buoyancy is proportional to the temperature deviation only.


Generalized Boussinesq approximation Instability Lorenz model 

Mathematics Subject Classification

35 76 



  1. 1.
    Capone, F., Gentile, M., Hill, A.A.: Penetrative convection in a fluid layer with throughflow. Ricerche di Matematica 57(2), 251–260 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Corli, A., Passerini, A.: The Bénard problem for slightly compressible materials: exsistence and linear instability. Mediterr. J. Math. (MJOM) (2019).
  3. 3.
    De Martino, A., Passerini, A.: Existence and non linear stability of convective solutions for almost compressible fluids in Bénard problem. J. Math. Phys.
  4. 4.
    Falsaperla, P., Mulone, G.: Stability in the rotating Bénard problem with Newton–Robin and fixed heat flux boundary conditions. Mech. Res. Commun. 37(1), 122–128 (2010)CrossRefGoogle Scholar
  5. 5.
    Galdi, G.P., Padula, M.: New approach to energy theory in the stability of fluid motion. Arch. Ration. Mech. Anal. 110, 187–286 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Giacobbe, A., Mulone, G.: Stability in the rotating Benard problem and its optimal lyapunov functions. Acta Appl. Math. 132(1), 307–320 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gouin, H., Ruggeri, T.: A consistent thermodinamical model of incompressible media as limit case of quasi-thermal-incopressible materials. Int. J. Non-linear Mech. 47, 688–693 (2012)CrossRefGoogle Scholar
  8. 8.
    Kagei, Y., Ruzicka, M.: The Oberbeck–Boussinesq approximation as a constituitive limit. Contin. Mech. Thermodyn. 28(5), 1411–1419 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khayat, R.E.: Fluid elasticity and the transition to chaos in termal convection. Phys. Rev. E 51, 380 (1995)CrossRefGoogle Scholar
  10. 10.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Passerini, A., Ferrario, C.: A theoretical study of the first transition for the non-linear Stokes problem in a horizontal annulus. Int. J. Non-Linear Mech. 78, 1–8 (2015)Google Scholar
  12. 12.
    Passerini, A., Ruggeri, T.: The Bénard problem for quasi-thermal-incompressible materials: a linear analysis. Int. J. Non-Linear Mech. 67(1), 178–185 (2014)CrossRefGoogle Scholar
  13. 13.
    Passerini, A., Ferrario, C., Thäter, G.: Generalization of the Lorenz model to the two-dimensional convection of second-grade fluids. Int. J Non-linear Mech. 39, 581–591 (2004)CrossRefGoogle Scholar
  14. 14.
    Passerini, A., Ruzicka, M., Thäter, G.: Natural convection between two horizontal coaxial cylinders. Zeitschrift fur angewandte mathematik und mechanik 89(5), 399–413 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Passerini, A., Ferrario, C., Ruzicka, M., Thäter, G.: Theoretical results on steady convective flows between horizontal coaxial cylinders. SIAM J. Appl. Math. 71(2), 465–486 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sparrow, C.T.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Spinger, New York (1982)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica Politecnico di MilanoMilanItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of FerraraFerraraItaly

Personalised recommendations