Gradient Estimates for Elliptic Operators with Second-Order Discontinuous Coefficients
Article
First Online:
- 40 Downloads
Abstract
We consider the second-order elliptic operator \(a>0\), \(b,\ c \in \mathbb {R}\) and we prove gradient estimates for the heat kernel.
$$\begin{aligned} L =\Delta +(a-1)\sum _{i,j=1}^N\frac{x_ix_j}{|x|^2}D_{ij}+c\frac{x}{|x|^2}\cdot \nabla -\frac{b}{|x|^{2}}, \end{aligned}$$
Keywords
Elliptic operators discontinuous coefficients analytic semigroups kernel estimatesMathematics Subject Classification
47D07 35B50 35J25 35J70Notes
References
- 1.Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. National Bureau of Standards Applied Mathematics Series, Washington D.C. (1964)zbMATHGoogle Scholar
- 2.Banuelos, R., Smits, R.G.: Brownian motion in cones. Probab. Theory Relat. Fields 108(3), 299–319 (1997)MathSciNetCrossRefGoogle Scholar
- 3.Baricz, Á.: On a product of modified Bessel functions. Proc. Am. Math. Soc. 137(01), 189–193 (2009)MathSciNetCrossRefGoogle Scholar
- 4.Bogus, K., Malecki, J.: Heat kernel estimates for the Bessel differential operator in half-line. Math. Nachr. 289, 17–18 (2016). https://doi.org/10.1002/mana.201500163 MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Garrett, P.: Harmonic analysis on spheres. http://www-users.math.umn.edu/~garrett/m/mfms/notes/11_spheres.pdf
- 6.Garrett, P.: Harmonic analysis on spheres II. http://www-users.math.umn.edu/~garrett/m/mfms/notes_c/spheres_II.pdf
- 7.Levin, B.Y.: Lectures on Entire Functions, Translations of Mathematical Monographs, vol. 150 (1996) (ISSN 0065-9282)Google Scholar
- 8.Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Modern Birkháuser Classics, Boston (2012)zbMATHGoogle Scholar
- 9.Metafune, G., Negro, L., Spina, C.: Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients. J. Evol. Equ. (2017). https://doi.org/10.1007/s00028-017-0408-0 CrossRefzbMATHGoogle Scholar
- 10.Metafune, G., Sobajima, M., Spina, C.: Elliptic and parabolic problems for a class of operators with second order discontinuous coefficients. Ann. Scuola Norm. Super. Pisa (2019). https://doi.org/10.2422/2036-2145.201605-002 CrossRefzbMATHGoogle Scholar
- 11.Metafune, G., Sobajima, M., Spina, C.: Kernel estimates for elliptic operators with second order discontinuous coefficients. J. Evol. Equ. 17, 485–522 (2017)MathSciNetCrossRefGoogle Scholar
- 12.Ouhabaz, E.M.: Analysis of Heat Equations on Domains. Princeton University Press, Princeton (2009)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019