Advertisement

More General Fractal Functions on the Sphere

  • Md. Nasim AkhtarEmail author
  • M. Guru Prem Prasad
  • M. A. Navascués
Article
  • 11 Downloads

Abstract

In this article, a family of continuous functions on the unit sphere \(S\subseteq \mathbb {R}^{3}\) generalizing the spherical harmonics, is considered. Using fractal methodology, the fractal version of this family of continuous functions on the sphere S is constructed. To do this, an iterated function system (IFS) and a linear bounded operator that maps classical functions to its fractal analogues is defined. Some approximation properties of fractal functions on the sphere are investigated. Restricting the scale vector involved in the IFS, a fractal Hilbert basis is established for the functions on the sphere.

Keywords

Fractal interpolation functions \(\alpha \)-fractal interpolation functions spherical harmonics best approximations Hilbert bases 

Mathematics Subject Classification

Primary 43A90 33C55 Secondary 28A80 

Notes

References

  1. 1.
    Akhtar, M.N., Guru Prem Prasad, M., Navascués, M.A.: Fractal Jacobi systems and convergence of Fourier-Jacobi expansions of fractal interpolation functions. Mediterr. J. Math. 13(6), 3965–3984 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Akhtar, M.N., Guru Prem Prasad, M., Navascués, M.A.: Box dimensions of \(\alpha \)-fractal functions. Fractals 24(3), 1–13 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Akhtar, M.N., Guru Prem Prasad, M., Navascués, M.A.: Box dimension of \(\alpha \)-fractal function with variable scaling factors in subintervals. Chaos Solitons Fractals 103, 440–449 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(4), 303–329 (1986)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carothers, N.L.: A Short Course on Banach Space Theory. London Mathematical Society Student Texts, Cambridge (2004)CrossRefGoogle Scholar
  6. 6.
    Chand, A.K.B., Tyada, K.R.: Positivity preserving rational cubic trigonometric fractal interpolation functions. In: Mohapatra, R.N. et al. (eds.) Mathematics and Computing. Springer Proceedings in Mathematics and Statistics, vol. 139, New Delhi (2015)Google Scholar
  7. 7.
    Chand, A.K.B., Navascués, M.A., Viswanathan, P., Katiyar, S.K.: Trigonometric polynomials for restricted range approximation. Fractals 24(2), 1650022 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Higgins, J.R.: Completeness and Basis Properties of Sets of Special Functions. Cambridge University Press, Cambridge (1977)CrossRefGoogle Scholar
  9. 9.
    Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis. Courier Dover Publ., New York (1990)Google Scholar
  10. 10.
    Megginson, R.E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics. Springer, Berlin (1998)CrossRefGoogle Scholar
  11. 11.
    Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend 25, 401–418 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Navascués, M.A.: Fractal trigonometric approximation. Electron. Trans. Numer. Anal. 20, 64–74 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Navascués, M.A.: Non-smooth polynomials. Int. J. Math. Anal. 1, 159–174 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4, 953–974 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Navascués, M.A.: Fractal bases of \(\cal{L}^{p}\) spaces. Fractals 20(2), 141–148 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Navascués, M.A., Chand, A.K.B.: Fundamental sets of fractal functions. Acta Appl. Math. 100(3), 247–261 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Navascués, M.A., Jha, S., Chand, A.K.B., Sebastián, M.V.: Fractal approximation of Jackson type for periodic phenomena. Fractals 26(5), 1850079 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sansone, G.: Orthogonal Functions. Dover Publications Inc., New York (1991)Google Scholar
  19. 19.
    Vijender, N.: Bernstein fractal rational approximants with no condition on scaling vectors. Fractals 26(4), 1850045 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Vijender, N.: Bernstein fractal approximation and fractal full Müntz theorems. Electron. Trans. Numer. Anal. 51, 1–14 (2019)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vijender, N.: Bernstein fractal trigonometric approximation. Acta Appl. Math. 159(1), 11–27 (2019)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Viswanathan, P., Navascués, M.A.: A fractal operator on some standard spaces of functions. Proc. Edinb. Math. Soc. 2(60), 771–786 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Md. Nasim Akhtar
    • 1
    Email author
  • M. Guru Prem Prasad
    • 1
  • M. A. Navascués
    • 2
  1. 1.Department of MathematicsIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Departamento de Matemática AplicadaUniversidad de ZaragozaSaragossaSpain

Personalised recommendations