Reflexive Line Graphs of Trees and Salem Numbers

  • Milica AnđelićEmail author
  • Slobodan K. Simić
  • Dejan Živković


An elegant full characterization of reflexive line graphs of trees has proved to be quite difficult task. This paper tries to shed some more light on known results about such graphs by providing more numerical details regarding their structural composition. The paper also presents numerous results and ideas on the topic, as well as some observations with respect to the connection with Salem numbers.


Line graph subdivision graph adjacency matrix second largest eigenvalue reflexive graph Salem graph 

Mathematics Subject Classification

15A18 05C50 



  1. 1.
    Calgary, F., Guo, Z.: Abelian spiders and real cyclotomic integers. Trans. Am. Math. Soc. 370, 6515–6533 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cvetković, D., Rowlinson, P., Simić, S.: Spectral Generalizations of Line Graphs, On graphs with least eigenvalue \(-2\). Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  3. 3.
    Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  4. 4.
    Cvetković, D., Rowlinson, P., Simić, S.K.: Graphs with least eigenvalue \(-2\): ten years on. Linear Algebra Appl. 483, 504–539 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gumbrell, L.: On spectral constructions for Salem graphs, Doctoral Thesis, Royal Holloway, University of London (2013)Google Scholar
  6. 6.
    Gumbrell, L., McKee, J.: A classification of all \(1\)-Salem graphs. LMS J. Comput. Math. 17, 582–594 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hoffman, A.J.: On limit points of spectral radii of non-negative symmetric integral matrices. Graph Theory Appl. 303, 165–172 (1972)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Maxwell, G.: Hyperbolic trees. J. Algebra 54, 46–49 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    McKee, J.F., Rowlinson, P., Smyth, C.J.: Salem numbers and Pisot numbers from stars. In: Györy, K., Iwaniec, H., Urbanowicz, J. (eds.) Number Theory in Progress, vol. I, pp. 309–319. de Gruyter, Berlin (1999)Google Scholar
  10. 10.
    McKee, J., Smyth, C.: Salem Numbers. Pisot numbers, Mahler measure, and graphs. Exp. Math. 14(2), 211–229 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Neumaier, A.: The second largest eigenvalue of trees. Linear Algebra Appl. 46, 2–25 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Neumaier, A., Seidel, J.J.: Discrete hyperbolic geometry. Combinatorica 3(2), 219–237 (1983)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Radosavljević, Z.: On unicyclic reflexive graphs. Appl. Anal. Discrete Math. 1, 228–240 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Radosavljević, Z., Simić, S.: Which bicyclic graphs are reflexive? Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. 7, 90–104 (1996)Google Scholar
  15. 15.
    Rašajski, M., Radosavljević, Z., Mihailović, B.: Maximal reflexive cactii with four cycles, The approach via Smith graphs. Linear Algebra Appl. 435, 2530–2543 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Schwenk, A.: Computing the characteristic polynomial of a graph. Graphs Comb. 406, 153–172 (1974)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Simić, S.K., Živković, D., Anđelić, M., da Fonseca, C.M.: Reflexive line graphs of trees. Algebraic J. Comb. 43(2), 262–274 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsKuwait UniversitySafatKuwait
  2. 2.Enel D.O.O.BelgradeSerbia
  3. 3.Mathematical Institute SANUBelgradeSerbia
  4. 4.Faculty of Informatics and ComputingSingidunum UniversityBelgradeSerbia

Personalised recommendations