Advertisement

Controllability for a One-Dimensional Wave Equation in a Non-cylindrical Domain

  • Isaías Pereira de JesusEmail author
Article
  • 16 Downloads

Abstract

This paper deals with the controllability for a one-dimensional wave equation with mixed boundary conditions in a non-cylindrical domain. This equation models small vibrations of a string where an endpoint is fixed and the other is moving. As usual, we consider one main control (the leader) and an additional secondary control (the follower). We use Stackelberg–Nash strategies.

Keywords

Wave equation hierarchic control Stackelberg–Nash strategy controllability 

Mathematics Subject Classification

35Q10 35B37 35B40 

Notes

Acknowledgements

The author wants to express his gratitude to the anonymous reviewers for their questions and commentaries; they were very helpful in improving this article.

References

  1. 1.
    Lions, J.-L.: Hierarchic control. Math. Sci. Proc. Indian Acad. Sci. 104, 295–304 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Díaz, J., Lions, J.-L.: On the approximate controllability of Stackelberg–Nash strategies. In: Díaz, J.I. (ed.) Ocean Circulation and Pollution Control Mathematical and Numerical Investigations, 17–27. Springer, Berlin (2005)Google Scholar
  3. 3.
    González, G., Lopes, F., Rojas-Medar, M.: On the approximate controllability of Stackelberg–Nash strategies for Stokes equations. Proc. Am. Math. Soc. 141(5), 1759–1773 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Araruna, F., Fernández-Cara, E., Guerrero, S., Santos, M.: New results on the Stackelberg–Nash exact control of linear parabolic equations. Syst. Control Lett. 104, 78–85 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Araruna, F., Fernández-Cara, E., Santos, M.: Stackelberg-Nash exact controllability for linear and semilinear parabolic equations. ESAIM Control Optim. Calc. Variat. 21(3), 835–856 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Araruna, F., Fernández-Cara, E., Silva, L.: Hierarchic control for the wave equation. J. Optim. Theory Appl. 178(1), 264–288 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sengouga, A.: Observability of the 1-D wave equation with mixed boundary conditions in a non-cylindrical domain. Mediterr. J. Math. 15, 62 (2018).  https://doi.org/10.1007/s00009-018-1107-y MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cui, L., Jiang, Y., Wang, Y.: Exact controllability for a one-dimensional wave equation with the fixed endpoint control. Bound. Value Probl. (2015).  https://doi.org/10.1186/s13661-015-0476-4 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cui, L., Song, L.: Exact controllability for a wave equation with fixed boundary control. Bound. Value Probl. (2014).  https://doi.org/10.1186/1687-2770-2014-47 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Miranda, M.M.: Exact controlllability for the wave equation in domains with variable boundary. Rev. Mat. Univ. Complut. Madr. 9, 435–457 (1996)zbMATHGoogle Scholar
  11. 11.
    Coron, J.-M.: Control and Nonlinearity. American Math. Soc, Providence (2007)zbMATHGoogle Scholar
  12. 12.
    Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhauser Advanced Texts. Birkhauser, Basel (2009)CrossRefGoogle Scholar
  13. 13.
    Cui, L., Liu, X., Gao, H.: Exact controllability for a one-dimensional wave equation in non-cylindrical domains. J. Math. Anal. Appl. 402, 612–625 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jesus, I.: Approximate controllability for a one-dimensional wave equation with the fixed endpoint control. J. Differ. Equ. 263, 5175–5188 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Miranda, M.M.: HUM and the wave equation with variable coeficients. Asymptot. Anal. 11, 317–341 (1995)zbMATHGoogle Scholar
  16. 16.
    Lions, J.-L.: Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968)zbMATHGoogle Scholar
  17. 17.
    Hörmander, L.: Linear Partial Differential Operators Die Grundlehren der mathematischen Wissenschaften, vol. 116. Academic, New York (1963)CrossRefGoogle Scholar
  18. 18.
    Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1969)Google Scholar
  19. 19.
    Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)CrossRefGoogle Scholar
  20. 20.
    Ekeland, I., Temam, R.: Analyse Convexe et problèmes Variationnels. Dunod, Gauthier-Villars, Paris (1974)zbMATHGoogle Scholar
  21. 21.
    Cui, L., Gao, H.: Exact controllability for a wave equation with mixed boundary conditions in a non-cylindrical domain. Electron. J. Differ. Equ. 101, 1–12 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sun, H., Li, H., Lu, L.: Exact controllability for a string equation in domains with moving boundary in one dimension. Electron. J. Differ. Equ. 2015, 1–7 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal do PiauíTeresinaBrazil

Personalised recommendations