Advertisement

Slant Submanifolds of a Lorentz Kenmotsu Manifold

  • Ramazan Sari
  • Aysel Turgut VanliEmail author
Article
  • 80 Downloads

Abstract

In this paper, we study slant submanifolds of a Lorentz Kenmotsu manifold. Necessary and sufficient conditions are given on a submanifold of a Lorentz Kenmotsu manifold to be a slant submanifold. We also study slant submanifolds of locally warped product Lorentz Kenmotsu manifold. We give examples of slant submanifold warped product a Lorentz Kenmotsu manifold. In addition, we investigate semi-slant submanifolds of a Lorentz Kenmotsu manifold. Moreover, we show that a semi-slant submanifold of locally warped product Lorentz Kenmotsu manifold is a warped product. Furthermore, we obtain some curvature properties for semi-slant submanifold of a Lorentz Kenmotsu space form. Finally, we show that if a semi-slant submanifold of a Lorentz Kenmotsu space form M is totally geodesic, then M is an \(\eta \)-Einstein manifold.

Keywords

Slant submanifold Semi-slant submanifold Warped product manifold Sectional curvature Lorentz Kenmotsu manifold 

Mathematics Subject Classification

53C25 53C40 

Notes

Acknowledgements

We would like to thank the referee for his/her suggestions.

References

  1. 1.
    Alegre, P.: Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds. Taiwan. J. Math. 17, 897–910 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–50 (1969)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Semi-slant submanifolds in Sasakian manifolds. Geom. Dedicata 78, 183–199 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cabrerizo, J.L., Carriazo, A., Fernandez, L.M.: Slant submanifolds in Sasakian manifolds. Glasgow Math. J. 42, 125–138 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, B.Y.: Geometry of slant submanifolds. Katholieke Universiteit Leuven, Leuven (1990)zbMATHGoogle Scholar
  6. 6.
    Chen, B.Y.: Slant immersions. Bull. Aust. Math. Soc. 41, 135–147 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, B.Y.: Geometry of warped product submanifolds: a survey. J. Adv. Math. Stud. 6(2), 1–43 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, B.Y.: Differential geometry of warped product manifolds and submanifolds. World Scientific, Hackensack (2017)CrossRefGoogle Scholar
  9. 9.
    Gupta, R.S., Pandey, P.K.: Structure on a slant submanifold of a Kenmotsu manifold. Differ. Geom. Dyn. Syst. 10, 139–147 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gupta, R.S., Haider, S.M.K., Shaid, M.H.: Slant submanifolds of Kenmotsu manifolds. Radovi Math. 12, 205–214 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Khan, V.A., Khan, M.A., Khan, K.A.: Slant and semi-slant submanifolds of a Kenmotsu manifold. Math. Slovaca 57(5), 1–12 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lotta, A.: Slant submanifolds in contact geometry. Bull. Math. Soc. Roumanie. 39, 183–198 (1996)zbMATHGoogle Scholar
  13. 13.
    Lotta, A.: Three dimensional slant submanifolds of \(K\)-contact manifolds. Balkan J. Geom. Appl. 3(1), 37–51 (1998)MathSciNetzbMATHGoogle Scholar
  14. 14.
    O’Neill, B.: Semi-Riemannian Geometry With Applications to Relativity. Academic, London (1983)zbMATHGoogle Scholar
  15. 15.
    Papaghiuc, N.: Semi-slant submanifolds of Kahlerian manifold. An. Ştiint. Univ. AI. Cuza. Univ. Iasi. 40, 55–61 (1994)zbMATHGoogle Scholar
  16. 16.
    Rosca, R.: On Lorentzian Kenmotsu manifolds. Atti Accad. Peloritana Pericolanti Cl. Aci. Fis. Mat. Natur, 69, 15–30 (1991)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Singh, K., Uddin, S., Singh Bhatia, S., Khan, M.A.: Slant submanifolds of Lorentzian almost contact manifold. Ann. Univ. Craiova Math. Comput. Sci. Ser. 39(2), 237–243 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Singh, K., Uddin, S., Khan, M.A.: A note on totally umbilical proper slant submanifold of a Lorentzian \(\beta \)-Kenmotsu manifold. Ann. Univ. Craiova Math. Comput. Sci. Ser. 38(1), 49–53 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Şahin, B.: Slant submanifolds of an almost product Riemannian manifold. J. Korean Math. Soc. 43, 717–732 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Şahin, B., Keleş, S.: Slant submanifolds of Kaehler product manifolds. Turk. J. Math. 31, 65–77 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gümüşhacıköy Hasan Duman Vocational SchoolsAmasya UniversityAmasyaTurkey
  2. 2.Department of MathematicsFaculty of Sciences Gazi UniversityAnkaraTurkey

Personalised recommendations