Semi-orthogonal Parseval Wavelets Associated with GMRAs on Local Fields of Positive Characteristic

  • Niraj K. ShuklaEmail author
  • Saurabh Chandra Maury
  • Shiva Mittal


In this article, we establish theory of semi-orthogonal Parseval wavelets associated with generalized multiresolution analysis (GMRA) for local fields of positive characteristics (LFPC) and obtain their characterization in terms of consistency equation. As a consequence, we obtain a characterization of an orthonormal (multi)wavelet associated with an MRA in terms of multiplicity function as well as dimension function. Further, we provide characterizations of Parseval scaling functions, scaling sets and bandlimited wavelets together with a Shannon-type multiwavelet. Some examples of such wavelets are also produced for LFPC.


Local fields translation invariant spaces multiplicity function semi-orthogonal Parseval wavelets bandlimited wavelets 

Mathematics Subject Classification

42C40 42C15 43A70 11S85 



The authors would like to thank all the anonymous reviewers for providing fruitful suggestions to improve the presentation of this article. The first and second authors were supported by NBHM (DAE) grant-14723 and TEQIP-III, NPIU (MHRD), respectively, during the revision of manuscript.


  1. 1.
    Albeverio, S., Evdokimov, S., Skopina, M.: \(p\)-adic nonorthogonal wavelet bases. Proc. Steklov Inst. Math. 265(1), 135–146 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Albeverio, S., Evdokimov, S., Skopina, M.: \(p\)-adic multiresolution analysis and wavelet frames. J. Fourier Anal. Appl. 16, 693–714 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baggett, L.W., Medina, H.A., Merrill, K.D.: Generalized multi-resolution analyses and a construction procedure for all wavelet sets in \({\mathbb{R}}^n\). J. Fourier Anal. Appl. 5(6), 563–573 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bakić, D.: Semi-orthogonal Parseval frame wavelets and generalized multiresolution analyses. Appl. Comput. Harmon. Anal. 21(3), 281–304 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Barbieri, D., Hernández, E., Mayeli, A.: Bracket map for the Heisenberg group and the characterization fo cyclic subspaces. Appl. Comput. Harmon. Anal. 37, 218–234 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Behera, B.: Shift-invariant subspaces and wavelets on local fields. Acta Math. Hungar. 148(1), 157–173 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Behera, B., Jahan, Q.: Multiresolution analysis on local fields and characterization of scaling functions. Adv. Pure Appl. Math. 3(2), 181–202 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Behera, B., Jahan, Q.: Characterization of wavelets and MRA wavelets on local fields of positive characteristic. Collect. Math. 66(1), 33–53 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Benedetto, J.J., Benedetto, R.L.: A wavelet theory for local fields and related groups. J. Geom. Anal. 14(3), 423–456 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Benedetto, R.L.: Examples of wavelets for local fields, Wavelets, frames and operator theory, 27–47, Contemp. Math., 345, Amer. Math. Soc., Providence, RI (2004)Google Scholar
  11. 11.
    Bownik, M.: The structure of shift-invariant subspaces of \(L^2({\mathbb{R}}^n)\). J. Funct. Anal. 177(2), 282–309 (2000)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bownik, M.: Baggett’s problem for frame wavelets, Representations, wavelets, and frames, 153–173, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA (2008)Google Scholar
  13. 13.
    Bownik, M., Ross, K.A.: The structure of translation-invariant spaces on locally compact abelian groups. J. Fourier Anal. Appl. 21(4), 849–884 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bownik, M., Rzeszotnik, Z.: On the existence of multiresolution analysis of framelets. Math. Ann. 332(4), 705–720 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bownik, M., Rzeszotnik, Z., Speegle, D.: A characterization of dimension functions of wavelets. Appl. Comput. Harmon. Anal. 10(1), 71–92 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Currey, B., Mayeli, A.: Gabor fields and wavelet sets for the Heisenberg group. Monatsh. Math. 162(2), 119–142 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Currey, B., Mayeli, A., Oussa, V.: Characterization of shift-invariant spaces on a class of nilpotent Lie groups with applications. J. Fourier Anal. Appl. 20(2), 384–400 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Farkov, Yu A.: Orthogonal wavelets on locally compact abelian groups. Funct. Anal. Appl. 31(4), 294–296 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Farkov, Yu A.: Multiresolution analysis and wavelets on Vilenkin groups, Facta Universitatis (NIS) Ser. Electron. Energy 21, 309–325 (2008)Google Scholar
  20. 20.
    Jiang, H.K., Li, D.F., Jin, N.: Multiresolution analysis on local fields. J. Math. Anal. Appl. 294(2), 523–532 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Lang, W.C.: Wavelet analysis on the Cantor dyadic group. Houst. J. Math. 24(3), 533–544 (1998)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Li, D.F., Jiang, H.K.: The necessary condition and sufficient condition for wavelet frame on local fields. J. Math. Anal. Appl. 345(1), 500–510 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Rzeszotnik, Z.: Characterization theorems in the theory of wavelets, Ph.D. thesis, Washington University (2000)Google Scholar
  24. 24.
    Shukla, N.K., Vyas, A.: Multiresolution analysis through low-pass filter on local fields of positive characteristic. Complex Anal. Oper. Theory 9(3), 631–652 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shukla, N.K., Maury, S.C.: Super-wavelets on local fields of positive characteristic. Math. Nachr. 291(4), 704–719 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Taibleson, M.H.: Fourier analysis on local fields. Princeton Univ. Press, Princeton (1975)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Niraj K. Shukla
    • 1
    Email author
  • Saurabh Chandra Maury
    • 2
    • 3
  • Shiva Mittal
    • 4
  1. 1.Discipline of MathematicsIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of Mathematics and Statistical SciencesS. R. M. UniversityLucknowIndia
  3. 3.Department of Applied Mathematics and Computational ScienceSGSITSIndoreIndia
  4. 4.Department of MathematicsS.P.M. Govt. Degree CollegePrayagrajIndia

Personalised recommendations