Advertisement

The Triple-Point Spectrum of Closed Orientable 3-Manifolds

  • Álvaro Lozano RojoEmail author
  • Rubén Vigara
Article
  • 43 Downloads

Abstract

The triple-point numbers and the triple-point spectrum of a closed 3-manifold are topological invariants that give a measure of the complexity of the 3-manifold using the number of triple points of minimal filling Dehn surfaces. Basic properties of these invariants are presented, and the triple-point spectra of \(\mathbb {S}^2\times \mathbb {S}^1\) and \(\mathbb {S}^3\) are computed.

Keywords

3-Manifold homology 3-sphere immersed surface filling Dehn surface triple points complexity of 3-manifolds 

Mathematics Subject Classification

Primary 57N10 57N35 57M27 

Notes

References

  1. 1.
    Aitchison, I.R., Matsumotoi, S., Rubinstein, J.H.: Immersed surfaces in cubed manifolds. Asian J. Math. 1(1), 85–95 (1997).  https://doi.org/10.4310/AJM.1997.v1.n1.a4 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amendola, G.: A local calculus for nullhomotopic filling Dehn spheres. Algebr. Geom. Topol. 9(2), 903–933 (2009).  https://doi.org/10.2140/agt.2009.9.903 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Amendola, G.: A 3-manifold complexity via immersed surfaces. J. Knot Theory Ramif. 19(12), 1549–1569 (2010).  https://doi.org/10.1142/S0218216510008558 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Babson, E.K., Chan, C.S.: Counting faces of cubical spheres modulo two. Discrete Math. 212(3), 169–183 (2000).  https://doi.org/10.1016/S0012-365X(99)00285-X. (Combinatorics and applications (Tianjin, 1996))MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carter, S., Kamada, S., Saito, M.: Surfaces in 4-space. Encyclopaedia of Mathematical Sciences, vol. 142. Springer, Berlin (2004). (Low-Dimensional Topology, III. MR2060067)zbMATHGoogle Scholar
  6. 6.
    Fenn, R., Rourke, C.: Nice spines of \(3\)-manifolds, Topology of low-dimensional manifolds, (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., vol. 722. Springer, Berlin 1979, 31–36 (1977)Google Scholar
  7. 7.
    Funar, L.: Cubulations, immersions, mappability and a problem of Habegger. Ann. Sci. École Norm. Sup. 32(5), 681–700 (1999).  https://doi.org/10.1016/S0012-9593(01)80003-3. (English, with English and French summaries)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Haken, W.: Some special presentations of homotopy \(3\)-spheres, Topology Conference, (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), Springer, Berlin, pp. 97–107. Lecture Notes in Math., Vol. 375 (1974)Google Scholar
  9. 9.
    Hall Jr., M.: The theory of groups. Chelsea Publishing Co., New York (1976). (Reprinting of the 1968 edition)Google Scholar
  10. 10.
    Johansson, I.: Über singuläre Elementarflächen und das Dehnsche Lemma. Math. Ann. 110(1), 312–320 (1935).  https://doi.org/10.1007/BF01448029. (German)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Johansson, I.: Über singuläre Elementarflächen und das Dehnsche Lemma II. Math. Ann. 115(1), 658–669 (1938).  https://doi.org/10.1007/BF01448964. (German)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lozano, Á., Vigara, R.: On the subadditivity of Montesinos complexity of closed orientable 3-manifolds. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 109(2), 267–279 (2015).  https://doi.org/10.1007/s13398-014-0179-1 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Montesinos-Amilibia, J.M.: Representing 3-manifolds by Dehn spheres, Mathematical contributions: volume in honor of Professor Joaquín Arregui Fernández (Spanish), Homen. Univ. Complut., Editorial Complutense, Madrid, pp. 239–247 (2000)Google Scholar
  14. 14.
    Papakyriakopoulos, C.D.: On Dehn’s lemma and the asphericity of knots. Ann. Math. (2) 66, 1–26 (1957).  https://doi.org/10.2307/1970113 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shima, A.: Immersions from the \(2\)-sphere to the \(3\)-sphere with only two triple points. Sūrikaisekikenkyūsho Kōkyūroku 1006, 146–160 (1997). (Topology of real singularities and related topics (Japanese) (Kyoto, 1997))MathSciNetzbMATHGoogle Scholar
  16. 16.
    Vigara, R.: A set of moves for Johansson representation of 3-manifolds. Fund. Math. 190, 245–288 (2006).  https://doi.org/10.4064/fm190-0-10 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vigara, R., Lozano, Á.: Representing 3-manifolds by filling Dehn surfaces, Series on Knots and Everything, vol. 58, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro Universitario de la Defensa ZaragozaZaragozaSpain
  2. 2.IUMA, Universidad de ZaragozaZaragozaSpain

Personalised recommendations