Advertisement

On the Structure of Essentially Semi-Regular Linear Relations

  • Teresa Álvarez
  • Sonia Keskes
  • Maher MnifEmail author
Article
  • 52 Downloads

Abstract

The Samuel multiplicity and the structure of essentially semi-regular linear relations on a Banach space are considered. First, we give some results concerning Samuel multiplicity for essentially semi-regular linear relations. Second, we study the structure of essentially semi-regular linear relations on an infinite dimensional complex Banach space. Finally, as an application, we get the structure of semi-Fredholm linear relations and we characterize a semi-Fredholm point \(\lambda \in \mathbb {C}\) in an essentially semi-regular domain.

Keywords

Essentially semi-regular linear relations Samuel multiplicity Semi-Fredholm linear relation Kato decomposition 

Mathematics Subject Classification

47A06 47A53 47A10 

Notes

References

  1. 1.
    Álvarez, T.: On regular linear relations. Acta Math. Sin. (Engl. Ser.) 28(2), 183–194 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Álvarez, T., Benharrat, M.: Relashionship between the Kato spectrum and the goldberg spectrum of a linear relation. Mediterr. J. Math. 13, 365–378 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Álvarez, T., Fakhfakh, F., Mnif, M.: Left–right Fredholm and left–right Browder linear relations. Filomat 31(2), 255–271 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Álvarez, T., Keskes, S., Mnif, M.: On essentially semi regular linear relations. Linear0 Algebra Appl. 530, 518–540 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cross, R.W.: Multivalued Linear Operators. Marcel Dekker, New York (1998)zbMATHGoogle Scholar
  6. 6.
    Chamkha, Y., Mnif, M.: Browder spectra of upper triangular matrix linear relations. Publ. Math. Debr. 82(3–4), 569–590 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fang, X.: Samuel multiplicity and the structure of semi Fredholm operators. Adv. Math. 186, 411–437 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kato, T.: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math. 6, 261–322 (1958)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Operator theory: Advances and Applications, vol. 139, 2nd edn. Birkhauser, Basel (2007)Google Scholar
  10. 10.
    Qing Ping, Z., HuaiJie, Z., Ying, Z.: Samuel multiplicity and the structure of essentially semi regular operators: a note on a paper of Frang. Sci. Chi. Math. 56(6), 1213–1231 (2013)CrossRefGoogle Scholar
  11. 11.
    Sandovici, A., de Snoo, H.S.V.: An index formula for the product of linear relations. Linear Algebra Appl. 431, 2160–2171 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sandovici, A., de Snoo, H., Winkler, H.: The structure of linear relations in Euclidean spaces. Linear Algebra Appl. 397, 141–169 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sandovici, A., de Snoo, H.S.V., Winkler, H.: Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces. Linear Algebra Appl. 423, 456–497 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OviedoOviedoSpain
  2. 2.Laboratory of Mathematical Physics, Department of MathematicsUniversity of Sfax, Faculty of Sciences of SfaxSfaxTunisia

Personalised recommendations