On Further Properties of Fully Zero-Simple Semihypergroups

  • Mario De Salvo
  • Domenico FreniEmail author
  • Giovanni Lo Faro


Let \({{\mathfrak {F}}}_0\) the class of fully zero-simple semihypergroups. In this paper, we study the main properties of residual semihypergroup \((H_+, \star )\) of a semihypergroup \((H, \circ )\) in \({{\mathfrak {F}}}_0\). We prove that the quotient semigroup \(H_+/\beta ^*_{H_+}\) is a completely simple and periodic semigroup. Moreover, we find the necessary and sufficient conditions for \((H_+, \star )\) to be a torsion group and, in particular, an abelian 2-group.


Semihypergroups simple semihypergroups fully semihypergroups 

Mathematics Subject Classification

20N20 05A99 



The work of M. De Salvo, D. Freni, and G. Lo Faro has been partially supported by INDAM (GNSAGA). D. Freni is supported by PRID 2017 funding (DMIF, University of Udine).


  1. 1.
    Antampoufis, N., Spartalis, S., Vougiouklis, Th.: Fundamental relations in special extensions. Algebraic hyperstructures and applications (Alexandroupoli-Orestiada, 2002), pp. 81–89, Spanidis, Xanthi, (2003)Google Scholar
  2. 2.
    Davvaz, B.: Semihypergroup theory. Academic Press, Cambridge (2016)zbMATHGoogle Scholar
  3. 3.
    Changphas, T., Davvaz, B.: Bi-hyperideals and Quasi-hyperideals in ordered semihypergroups. Ital. J. Pure Appl. Math. 35, 493–508 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Corsini, P.: Prolegomena of Hypergroup Theory. Aviani Editore (1993)Google Scholar
  5. 5.
    Corsini, P., Leoreanu-Fotea, V.: Applications of hyperstructure theory. Kluwer Academic Publisher, Dordrecht (2003)CrossRefGoogle Scholar
  6. 6.
    Davvaz, B., Leoreanu-Fotea, V.: Hyperring theory and applications. International Academic Press, USA (2007)zbMATHGoogle Scholar
  7. 7.
    Davvaz, B., Salasi, A.: A realization of hyperrings. Commun. Algebra 34(12), 4389–4400 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Salvo, M., Lo Faro, G.: On the n*-complete hypergroups. Dis. Math. 209, 177–188 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    De Salvo, M., Freni, D., Lo Faro, G.: Fully simple semihypergroups. J. Algebra 399, 358–377 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Salvo, M., Fasino, D., Freni, D., Lo Faro, G.: Fully simple semihypergroups, transitive digraphs, and sequence A000712. J. Algebra 415, 65–87 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    De Salvo, M., Fasino, D., Freni, D., Lo Faro, G.: A family of \(0\)-simple semihypergroups related to sequence A00070. J. Mult. Valued Logic Soft Comput. 27, 553–572 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    De Salvo, M., Freni, D., Lo Faro, G.: Hypercyclic subhypergroups of finite fully simple semihypergroups. J. Mult. Valued Logic Soft Comput. 29, 595–617 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    De Salvo, M., Fasino, D., Freni, D., Lo Faro, G.: Semihypergroups obtained by merging of \(0\)-semigroups with groups. It will appear in Filomat, 32 (12), (2018)Google Scholar
  14. 14.
    De Salvo, M., Lo Faro, G.: A new class of hypergroupoids associated to binary relations. J. Mult. Valued Logic Soft Comput. 9, 361–375 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fasino, D., Freni, D.: Fundamental relations in simple and 0-simple semi-hypergroups of small size. Arab. J. Math. 1, 175–190 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Freni, D.: A new characterization of the derived hypergroup via strongly regular equivalences. Commun. Algebra 30(8), 3977–3989 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gutan, M.: Boolean matrices and semihypergroups. Rend. Circ. Mat. Palermo (2) 64(1), 157–165 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hila, K., Davvaz, B., Naka, K.: On quasi-hyperideals in semihypergroups. Commun. Algebra 39, 4183–4194 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Howie, M.: Fundamentals of semigroup theory. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  20. 20.
    Koskas, H.: Groupoïdes, demi-hypergroupes et hypergroupes. J. Math. Pures Appl. 49, 155–192 (1970)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Krasner, M.: A class of hyperrings and hyperfields. Int. J. Math. Math. Sci. 6(2), 307–311 (1983)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Naz, S., Shabir, M.: On soft semihypergroups. J. Intell. Fuzzy Syst. 26, 2203–2213 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Procesi – Ciampi, R., Rota, R.: The hyperring spectrum. Riv. Mat. Pura Appl. 1, 71–80 (1987)MathSciNetzbMATHGoogle Scholar
  24. 24.
    The On-Line Encyclopedia of Integer Sequences.
  25. 25.
    Vougiouklis, T.: Fundamental relations in hyperstructures. Bull. Greek Math. Soc. 42, 113–118 (1999)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze Matematiche e Informatiche Scienze Fisiche e Scienze della TerraUniversità di MessinaMessinaItaly
  2. 2.Dipartimento di Scienze Matematiche Informatiche e FisicheUniversità di UdineUdineItaly

Personalised recommendations