Non-orthogonal Fusion Frames of an Analytic Operator and Application to a One-Dimensional Wave Control System

  • Hanen Ellouz
  • Ines FekiEmail author
  • Aref Jeribi


In this paper, we are mainly concerned with a one-dimensional wave control system. We assert the existence of non-orthogonal fusion frames by extending this problem to a theoretical one introduced by Sz. Nagy (Acta Sci Math Szeged 14, 1951). The key idea of this work is based on the estimate inspired from Sz. Nagy (1951) using the spectral analysis method. More precisely, we prove that if the eigenvalues of the unperturbed operator are isolated and with finite multiplicity, we can construct non-orthogonal fusion frames.


Non-orthogonal fusion frames Eigenvalues finite multiplicity Eigenprojection wave equation 

Mathematics Subject Classification

47A55 47B38 47H14 47JXX 47J10 



  1. 1.
    Asgari, M.S.: New characterizations of fusion frames \((\)frames of subspaces\()\). Proc. Indian Acad. Sci. Math. Sci. 119, 369–382 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asgari, M.S., Khosravi, A.: Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl. 308, 541–553 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ben Ali, N., Jeribi, A.: On the Riesz basis of a family of analytic operators in the sense of Kato and application to the problem of radiation of a vibrating structure in a light fluid. J. Math. Anal. Appl. 320, 78–94 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cahill, J., Casazza, P.G., Li, S.: Non-orthogonal fusion frames and the sparsity of fusion frame operators. J. Fourier Anal. Appl. 18, 287–308 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Casazza, P.G., Kutyniok, G.: Frames of Subspaces. Wavelets, Frames and Operator Theory, Contemporary Mathematics, Volume 345, pp. 87–113. American Mathematical Society, Providence (2004)Google Scholar
  6. 6.
    Christensen, O.: Frames containing a Riesz basis and approximation of the frame coefficients using finite-dimensional methods. J. Math. Anal. Appl. 199, 256–270 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ellouz, H., Feki, I., Jeribi, A.: On a Riesz basis of exponentials related to the eigenvalues of an analytic operator and application to a non-selfadjoint problem deduced from a perturbation method for sound radiation. J. Math. Phys. 54, 112101 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Feki, I., Jeribi, A., Sfaxi, R.: On an unconditional basis of generalized eigenvectors of an analytic operator and application to a problem of radiation of a vibrating structure in a light fluid. J. Math. Anal. Appl. 375, 261–269 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Feki, I., Jeribi, A., Sfaxi, R.: On a Schauder basis related to the eigenvectors of a family of non-selfadjoint analytic operators and applications. Anal. Math. Phys. 3, 311–331 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feki, I., Jeribi, A., Sfaxi, R.: On a Riesz basis of eigenvectors of a nonself-adjoint analytic operator and applications. Linear Multilinear Algebra 62, 1049–1068 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guo, B.Z., Chan, K.Y.: Riesz basis generation, eigenvalues distribution, and exponential stability for a Euler–Bernoulli beam with joint feedback control. Rev. Mat. Complut. 14, 205–229 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jeribi, A.: Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer, New York (2015)CrossRefGoogle Scholar
  13. 13.
    Jeribi, A.: Denseness. Bases and Frames in Banach Spaces and Applications. De Gruyter, Berlin (2018)zbMATHGoogle Scholar
  14. 14.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)zbMATHGoogle Scholar
  15. 15.
    Kobayashi, T.: Stabilization of infinite-dimensional undamped second order systems by using a parallel compensator. IMA J. Math. Control Inf. 21, 85–94 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sz. Nagy, B.: Perturbations des transformations linéaires fermées. Acta Sci. Math. Szeged 14, 125–137 (1951)Google Scholar
  17. 17.
    Xu, G.Q.: Stabilization of string system with linear boundary feedback. Nonlinear Anal. Hybrid Syst. 1, 383–397 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Xu, G.Q., Feng, D.X.: The Riesz basis property of a Timoshenko beam with boundary feedback and application. IMA J. Appl. Math. 67, 357–370 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Xu, G.Q., Yung, S.P.: Properties of a class of \(C_0\) semigroups on Banach spaces and their applications. J. Math. Anal. Appl. 328, 245–256 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, London (1980)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité de Sfax, Ecole supérieure de commerce de SfaxSfaxTunisia

Personalised recommendations