A Characterization of the Absolute Continuity in Terms of Convergence in Variation for the Sampling Kantorovich Operators

  • Laura Angeloni
  • Danilo CostarelliEmail author
  • Gianluca Vinti


We study the convergence in variation for the sampling Kantorovich operators in both the cases of averaged-type kernels and classical band-limited kernels. In the first case, a characterization of the space of the absolutely continuous functions in terms of the convergence in variation is obtained.


Convergence in variation sampling Kantorovich series averaged kernel variation diminishing-type property generalized sampling series 

Mathematics Subject Classification

41A25 41A05 41A30 47A58 



The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors are partially supported by the “Department of Mathematics and Computer Science” of the University of Perugia (Italy). The first author has been partially supported within the project “Metodi di approssimazione in spazi di funzioni a variazione limitata”, funded by the 2015 basic research fund of the University of Perugia; the second author has been partially supported within the 2018 GNAMPA-INdAM Project entitled: “Dinamiche non autonome, analisi reale e applicazioni”, while the first and the third authors within the projects: ricerca di Base 2017 dell’Università degli Studi di Perugia - “Metodi di Teoria degli Operatori e di Analisi Reale per Problemi di Approssimazione ed Applicazioni”, and ricerca di Base 2018 dell’Università degli Studi di Perugia - “Metodi di Teoria dell’Approssimazione, Analisi Reale, Analisi Nonlineare e loro Applicazioni”.


  1. 1.
    Abel, U., Agratini, O.: On the variation detracting property of operators of Balazas and Szabados. Acta Math. Hungar. 150(2), 383–395 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agratini, O.: An approximation process of Kantorovich type. Math. Notes Miskolc 2(1), 3–10 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Agratini, O.: On the variation detracting property of a class of operators. Appl. Math. Lett. 19(11), 1261–1264 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Agrawal, P.N., Baxhaku, B.: Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein–Stancu–Kantorovich operators. Appl. Math. Comput. 306, 56–72 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Allasia, G., Cavoretto, R., De Rossi, A.: Lobachevsky spline functions and interpolation to scattered data. Comput. Appl. Math. 32, 71–87 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Allasia, G., Cavoretto, R., De Rossi, A.: Numerical integration on multivariate scattered data by Lobachevsky splines. Int. J. Comput. Math. 90, 2003–2018 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Angeloni, L.: Approximation results with respect to multidimensional \(\varphi \)-variation for nonlinear integral operators. Z. Anal. Anwend. 32(1), 103–128 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Angeloni, L., Vinti, G.: Approximation with respect to Goffman-Serrin variation by means of non-convolution type integral operators. Numer. Funct. Anal. Optim. 31, 519–548 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Angeloni, L., Vinti, G.: A sufficient condition for the convergence of a certain modulus of smoothness in multidimensional setting. Commun. Appl. Nonlinear Anal. 20(1), 1–20 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Angeloni, L., Vinti, G.: Approximation in variation by homothetic operators in multidimensional setting. Differ. Integral Equ. 26(5–6), 655–674 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Angeloni, L., Vinti, G.: Convergence and rate of approximation in \(BV^{\varphi }({\mathbb{R}}_+^N)\) for a class of Mellin integral operators. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. (9) Appl. 25(3), 217–232 (2014)CrossRefGoogle Scholar
  12. 12.
    Angeloni, L., Vinti, G.: Convergence in variation and a characterization of the absolute continuity. Integral Transforms Spec. Funct. 26(10), 829–844 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Angeloni, L., Vinti, G.: Discrete operators of sampling type and approximation in \(\varphi \)-variation. Math. Nachr. 291, 546–555 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Angeloni, L., Costarelli, D., Vinti, G.: A characterization of the convergence in variation for the generalized sampling series. Ann. Acad. Sci. Fenn. Math. 43, 755–767 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Asdrubali, F., Baldinelli, G., Bianchi, F., Costarelli, D., Rotili, A., Seracini, M., Vinti, G.: Detection of thermal bridges from thermographic images by means of image processing approximation algorithms. Appl. Math. Comput. 317, 160–171 (2018)MathSciNetGoogle Scholar
  16. 16.
    Asdrubali, F., Baldinelli, G., Bianchi, F., Costarelli, D., Evangelisti, L., Rotili, A., Seracini, M., Vinti, G.: A model for the improvement of thermal bridges quantitative assessment by infrared thermography. Appl. Energy 211, 854–864 (2018)CrossRefGoogle Scholar
  17. 17.
    Bardaro, C., Vinti, G.: General convergence theorem with respect to Cesari variation and applications. Nonlinear Anal. 22(4), 505–518 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals. Analysis 23, 299–340 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Kantorovich-type generalized sampling series in the setting of Orlicz spaces. Sampl. Theory Signal Image Process. 6, 29–52 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bardaro, C., Karsli, H., Vinti, G.: Nonlinear integral operators with homogeneous kernels: pointwise approximation theorems. Appl. Anal. 90(3–4), 463–474 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bartoccini, B., Costarelli, D., Vinti, G.: Extension of saturation theorems for the sampling Kantorovich operators. Complex Anal. Oper. Theory (2018).
  22. 22.
    Bieniek, M.: Variation diminishing property of densities of uniform generalized order statistics. Metrika 65(3), 297–309 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Boccuto, A., Candeloro, D., Sambucini, A.R.: \(L^p\) spaces in vector lattices and applications. Math. Slov. 67(6), 1409–1426 (2017). CrossRefzbMATHGoogle Scholar
  24. 24.
    Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation I. Academic Press, New York (1971)CrossRefGoogle Scholar
  25. 25.
    Butzer, P.L., Ries, S., Stens, R.L.: Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 50(1), 25–39 (1987)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Butzer, P.L., Fisher, A., Stens, R.L.: Generalized sampling approximation of multivariate signals: theory and applications. Note Mat. 1(10), 173–191 (1990)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Carnicer, J.M., Goodman, T.N., Pena, J.M.: A generalization of the variation diminishing property. Adv. Comput. Math. 3(4), 375–394 (1995)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chang, G.Z., Hoschek, J.: Convexity and variation diminishing property of Bernstein polynomials over triangles. Int. Ser. Numer. Math. 75, 61–70 (1985)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Cluni, F., Costarelli, D., Minotti, A.M., Vinti, G.: Applications of sampling Kantorovich operators to thermographic images for seismic engineering. J. Comput. Anal. Appl. 19(4), 602–617 (2015)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Coroianu, L., Gal, S.G.: \(L^p\)-approximation by truncated max-product sampling operators of Kantorovich-type based on Fejer kernel. J. Integral Equ. Appl. 29(2), 349–364 (2017)CrossRefGoogle Scholar
  31. 31.
    Costarelli, D., Vinti, G.: Pointwise and uniform approximation by multivariate neural network operators of the max-product type. Neural Netw. 81, 81–90 (2016)CrossRefGoogle Scholar
  32. 32.
    Costarelli, D., Vinti, G.: Convergence for a family of neural network operators in Orlicz spaces. Math. Nachr. 290(2–3), 226–235 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Costarelli, D., Vinti, G.: Estimates for the neural network operators of the max-product type with continuous and p-integrable functions. Results Math. 73(1), 12 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Costarelli, D., Vinti, G.: An inverse result of approximation by sampling Kantorovich series. Proc. Edinb. Math. Soc. 62(1), 265–280 (2019)Google Scholar
  35. 35.
    Costarelli, D., Minotti, A.M., Vinti, G.: Approximation of discontinuous signals by sampling Kantorovich series. J. Math. Anal. Appl. 450(2), 1083–1103 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Cottin, C., Gavrea, I., Gonska, H.H., Kacsó, D.P., Zhou, D.X.: Global smoothness preservation and the variation-diminishing property. J. Inequal. Appl. 4(2), 91–114 (1999). MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)CrossRefGoogle Scholar
  38. 38.
    Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Heilmann, M., Rasa, I.: A nice representation for a link between Bernstein–Durrmeyer and Kantorovich operators. Commun. Comput. Inf. Sci. 655, 312–320 (2017)MathSciNetGoogle Scholar
  40. 40.
    Karsli, H.: On convergence of Chlodovsky and Chlodovsky–Kantorovich polynomials in the variation seminorm. Mediterr. J. Math. 10(1), 41–56 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Karsli, H., Oksuzer Yilik, O., Yesildal, F.T.: Convergence of the Bernstein–Durrmeyer operators in variation seminorm. Results Math. 72(3), 1257–1270 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Kivinukk, A., Metsmagi, T.: The variation detracting property of some Shannon sampling series and their derivatives. Sampl. Theory Signal Image Process. 13, 189–206 (2014)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Krejci, P., Roche, T.: Lipschitz continuous data dependence of sweeping processes in BV spaces. Discrete Contin. Dyn. Syst. Ser. B 15, 637–650 (2011)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Laczkovich, M., Sós, V.T.: Functions of bounded variation. In: Real Analysis. Springer, New York, pp. 399–406 (2015)CrossRefGoogle Scholar
  45. 45.
    Orlova, O., Tamberg, G.: On approximation properties of generalized Kantorovich-type sampling operators. J. Approx. Theory 201, 73–86 (2016)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Sancetta, A.: Nonparametric estimation of distributions with given marginals via Bernstein–Kantorovich polynomials: L1 and pointwise convergence theory. J. Multivariate Anal. 98(7), 1376–1390 (2007)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Schumaker, L.L.: Spline Functions—Computational Methods. SIAM, Philadelphia (2015)CrossRefGoogle Scholar
  48. 48.
    Speleers, H.: Multivariate normalized Powell–Sabin B-splines and quasi-interpolants. Comput. Aided Geom. Design 30(1), 2–19 (2013)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  50. 50.
    Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, vol. 120. Springer Science and Business Media, New York (2012)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly

Personalised recommendations