Advertisement

The Nonlinear Superposition Operators Between Zygmund-Type and Bloch-Type Spaces

  • Yu-Xia Liang
  • Ze-Hua ZhouEmail author
Article
  • 20 Downloads

Abstract

Let \(\varphi \) be a complex-valued function in the plane \({\mathbb {C}}.\) The superposition operator is defined by \( S_\varphi (f)=\varphi \circ f\). In this paper, we characterize the nonlinear superposition operators \(S_\varphi \) acting between the Zygmund-type and Bloch-type spaces in terms of the order and type or the degree of \(\varphi \).

Keywords

Nonlinearity superposition operator Zygmund-type space Bloch-type space boundedness order 

Mathematics Subject Classification

Primary 47H30 Secondary 30D45 30H05 

Notes

Acknowledgements

The authors warmly thank the anonymous referee for many suggestions which helped to improve the quality of the paper.

References

  1. 1.
    Álvarez, V., Márquez, M.A., Vukotić, D.: Superposition operators between the Bloch space and Bergman spaces. Ark. Mat. 42, 205–216 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  3. 3.
    Buckley, S.M., Fernández, J.L., Vukotić, D.: Superposition Operators on Dirichlet Type Spaces. Papers on Analysis: A Volume Dedicated to Olli Martio on the Occasion of his 60th Birthday, pp. 41–61. University of Jyväskylä, Jyväskylä (2001)Google Scholar
  4. 4.
    Boyd, C., Rueda, P.: Holomorphic superposition operators between Banach function spaces. J. Aust. Math. Soc. 96(2), 186–197 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buckley, S.M., Vukotić, D.: Univalent interpolation in Besov spaces and superposition into Bergman spaces. Potential Anal. 29, 1–16 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bonet, J., Vukotić, D.: Superposition operators between weighted Banach spaces of analytic functions of controlled growth. Monatsh. Math. 170(3–4), 311–323 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cámera, G.A.: Nonlinear superposition on spaces of analytic functions. In: Marcantognini, S.A.M., Mendoza, G.A., Morán, M.D., Octavio, A., Urbina, W.O. (eds.) Harmonic Analysis and Operator Theory, Contemporary Mathematics, vol. 189, pp. 103–116 (1995)Google Scholar
  8. 8.
    Castillo, R.E., Fernández, J., Salazar, M.: Bounded superposition operators between Bloch-Orlicz and \(\alpha \)-Bloch spaces. Appl. Math. Comput. 218, 3441–3450 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cámera, G.A., Giménez, J.: Nonlinear superposition operators acting on Bergman spaces. Compos. Math. 93, 23–35 (1994)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  11. 11.
    Duren, P.L.: Theory of \(H^p\) Spaces. Academic Press, New York (1970)Google Scholar
  12. 12.
    Esmaeili, K., Lindström, M.: Weighted composition operators between Zygmund type spaces and their essential norms. Integr. Equ. Oper. Theory 75, 473–490 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ramos Fernández, J.C.: Bounded superposition operators between weighted Banach spaces of analytic functions. Appl. Math. Comput. 219, 4942–4949 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Galanopoulos, P., Girela, D., Márquez, M.A.: Superposition operators, Hardy spaces, and Dirichlet type spaces. J. Math. Anal. Appl. 463(2), 659–680 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Girela, D., Márquez, M.A.: Superposition operators between \(Q_p\) spaces and Hardy spaces. J. Math. Anal. Appl. 364, 463–472 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Levin, B.Ya.: Lectures on Entire Functions, Translations of Mathematical Monographs. American Mathematical Society, Providence (1996)CrossRefGoogle Scholar
  17. 17.
    Shapiro, J.H.: Composition operators and Classical Function Theory. Springer, New York (1993)CrossRefGoogle Scholar
  18. 18.
    Xiong, C.: Superposition operators between \(Q_p\) spaces and Bloch-type spaces. Complex Var. Theory Appl. 50, 935–938 (2005)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Xu, W.: Superposition operators on Bloch-type spaces. Comput. Methods Funct. Theory 7, 501–507 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhu, K.H.: Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, vol. 226. Springer, New York (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesTianjin Normal UniversityTianjinPeople’s Republic of China
  2. 2.School of MathematicsTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations