Advertisement

Convergence Properties of the Single-Step Preconditioned HSS Method for Non-Hermitian Positive Semidefinite Linear Systems

  • Chengliang Li
  • Changfeng MaEmail author
Article
  • 26 Downloads

Abstract

For the nonsingular, non-Hermitian and positive semidefinite linear systems, we derive the convergence results of the single-step preconditioned HSS (SPHSS) method under suitable constraints. Additionally, we consider the acceleration of the SPHSS method by Krylov subspace methods and some spectral properties of the preconditioned matrix are established. Numerical experiments are presented to further examine the effectiveness of the proposed method either as a solver or a preconditioner.

Keywords

Nonsingular non-Hermitian positive semidefinite linear systems SPHSS method convergence spectral properties 

Mathematics Subject Classification

65F10 65F50 

Notes

References

  1. 1.
    Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ren, L., Xin, J.: Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D, Electron. J. Differ. Equ. 312, 1–22 (2018)Google Scholar
  3. 3.
    Wang, B., Meng, F., Fang, Y.: Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations. Appl. Numer. Math. 119, 164–178 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Han, M., Sheng, L., Zhang, X.: Bifurcation theory for finitely smooth planar autonomous differential systems. J. Differ. Equ. 264, 3596–3618 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Han, M., Hou, X., Sheng, L., Wang, C.: Theory of rotated equations and applications to a population model. Discrete Contin. Dyn. Syst. A 38, 2171–2185 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, F., Du, G.: General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback. J. Appl. Anal. Comput. 8, 390–401 (2018)MathSciNetGoogle Scholar
  7. 7.
    Li, M., Wang, J.: Exploring delayed mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018)MathSciNetGoogle Scholar
  8. 8.
    Wang, B., Wu, X., Meng, F.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wang, B.: Exponential Fourier collocation methods for solving first-order differential equations. J. Comput. Appl. Math. 35, 711–736 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Tian, H., Han, M.: Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems. J. Differ. Equ. 263, 7448–7474 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guo, L., Liu, L., Wu, Y.: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions. Nonlinear Anal. Model. Control 21, 635–650 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Arridge, S.R.: Optical tomography in medical imaging. Inverse Probl. 15, 41–93 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bertaccini, D.: Efficient solvers for sequences of complex symmetric linear systems. Electron. Trans. Numer. Anal. 18, 49–64 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Feriani, A., Perotti, F., Simoncini, V.: Iterative system solvers for the frequency analysis of linear mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 1719–1739 (2000)CrossRefGoogle Scholar
  15. 15.
    Frommer, A., Lippert, T., Medeke, B., Schilling, K.: Numerical challenges in lattice quantum chromodynamics. Lect. Notes Comput. Sci. Eng. 15, 1719–1739 (2000)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Poirier, B.: Effecient preconditioning scheme for block partitioned matrices with structured sparsity. Numer. Linear Algebra Appl. 7, 715–726 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Schmitt, D., Steffen, B., Weiland, T.: 2D and 3D computations of lossy eigenvalue problems. IEEE Trans. Magn. 30, 3578–3581 (1994)CrossRefGoogle Scholar
  18. 18.
    Moro, G., Freed, J.H.: Calculation of ESR spectra and related FokkerPlanck forms by the use of the Lanczos algorithm. J. Chem. Phys. 74, 3757–3773 (1981)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and Skew–Hermitian splitting methods for non-hermitian positive definite linear systems. SIAM. J. Matrix Anal. Appl. 24, 603–626 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bai, Z.Z., Golub, G.H., Pan, J.Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bai, Z.-Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76, 287–298 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93–111 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Benzi, M.: A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J. Matrix Anal. Appl. 31, 360–374 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bai, Z.-Z.: Block preconditioners for elliptic PDE-constrained optimization problems. Computing 91, 379–395 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting methods for saddle point problems. IMA J. Numer. Anal. 27, 1–23 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bai, Z.-Z.: Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks. J. Comput. Appl. Math. 237, 295–230 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, C.-X., Wu, S.-L.: A single-step HSS method for non-Hermitian positive definite linear systems. Appl. Math. Lett. 44, 26–29 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wu, Y.-J., Li, X., Yuan, J.-Y.: A non-alternating preconditioned HSS iteration method for non-Hermitian positive definite linear systems. Comput. Appl. Math. 36, 367–381 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Benzi, M., Guo, X.-P.: A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations. Appl. Numer. Math. 61, 66–76 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  31. 31.
    Cao, Y., Tan, W.-W., Jiang, M.-Q.: A generalization of the positive-definite and skew-Hermitian splitting iteration. Numer. Control Optim. 2, 811–821 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Press, New York (1995)Google Scholar
  33. 33.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Huang, Y.-M.: A practical formula for computing optimal parameters in the HSS iteration methods. J. Comput. Appl. Math. 255, 142–149 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Mathematics and Informatics and FJKLMAAFujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations