The Semigroup Algebra \(\ell ^1(\mathbb Z^2,\max )\) is a Bochner–Schoenberg–Eberlein (BSE) Algebra

  • Prakash A. DabhiEmail author
  • Rakshit S. Upadhyay


The result stated in the title is proved and is applied to show that the corresponding multiplier algebra and unitization are also BSE-algebras.


Semigroup algebra semigroup multipliers multipliers on commutative Banach algebras BSE property 

Mathematics Subject Classification

46J05 20M14 



The authors are thankful to Professor S. J. Bhatt for fruitful discussions. The authors are thankful to the referee for critical reading of manuscript and fruitful suggestions.


  1. 1.
    Bochner, S.: A theorem on Fourier-Stieltjes integrals. Bull. Am. Math. Soc. 40(4), 271–276 (1934)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dabhi, P.A.: The BSE-property and perturbed cartesian product in commutative Banach algebras. Acta Math. Hungar. 149(1), 58–66 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Eberlien, W.F.: Characterization of Fourier-Stieltjes transforms. Duke Math. J. 22(3), 465–468 (1955)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hewitt, E., Zuckerman, H.S.: The \(\ell _1\)-algebra of a commutative semigroup. Trans. Am. Math. Soc. 83(1), 70–97 (1956)zbMATHGoogle Scholar
  5. 5.
    Inoue, Jyunji, Takahasi, Sin-Ei: On characterizations of the image of the Gelfand transform of commutative Banach algebras. Math. Nachr. 280(12), 105–126 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kamali, Z., Lashkarizadehbami, M.: The Bochner–Schoenberg–Eberlein property for totally ordered semigroup algebras. J. Fourier Anal. Appl. 22(6), 1225–1234 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kamali, Z., Lashkarizadehbami, M.: The Bochner–Schonberg–Eberlein property for \(L^1(\mathbb{R}^+)\). J. Fourier Anal. Appl. 20(2), 225–233 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kamali, Z., Lashkarizadehbami, M.: The multiplier algebra and BSE-property of the direct sum of Banach algebras. Bull. Aust. Math. Soc. 88(2), 250–258 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kaniuth, E.: The Bochner–Schoenberg–Eberlein property and spectral synthesis for certain Banach algebra products. Can. J. Math. 67(4), 827–847 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kaniuth, E., Ulger, A.: The Bochner–Schonberg–Eberlein property for commutative Banach algebras, especially Fourier-Stieltjes algebras. Trans. Am. Math. Soc. 362(8), 4331–4356 (2010)CrossRefGoogle Scholar
  11. 11.
    Lahr, C.D.: Multipliers for \(\ell ^1\)-algebras with approximate identities. Proc. Am. Math. Soc. 42(2), 501–506 (1974)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Larsen, R.: Banach Algebra: An Introduction. Dekker, New York (1973)zbMATHGoogle Scholar
  13. 13.
    Larsen, R.: An Introduction to the Theory of Multipliers. Springer, Berlin (1971)CrossRefGoogle Scholar
  14. 14.
    Rudin, W.: Fourier Analysis on Groups. Wiley-Interscience, New York (1984)zbMATHGoogle Scholar
  15. 15.
    Schoenberg, I.J.: A remark on the preceding note by Bochner. Bull. Am. Math. Soc. 40(4), 277–278 (1934)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Takahasi, Sin-Ei, Hatori, O.: Commutative Banach algebra BSE-inequalities. Math. Jpn. 37(4), 47–52 (1992)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Takahasi, Sin-Ei, Hatori, O.: Commutative Banach algebra which satisfy a Bochner–Schoenberg–Eberlien type theorem. Proc. Am. Math. Soc. 110(1), 149–158 (1990)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsSardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations