A Bimonogenic Cauchy Transform on Higher Order Lipschitz Classes

  • Lianet De la Cruz Toranzo
  • Arsenio Moreno García
  • Tania Moreno García
  • Ricardo Abreu BlayaEmail author
  • Juan Bory Reyes


We prove that a Cauchy transform naturally arising for bimonogenic Clifford algebra valued functions theory behaves invariant on the higher order Lipschitz classes and obtain a Plemelj–Privalov theorem for the related singular integral transform. Moreover, we obtain an upper bound for the norm of such an operator in the pathological case of fractal boundaries.


Cauchy transform Bimonogenic functions Higher order Lipschitz classes 

Mathematics Subject Classification




We want to thank the referee whose generous and valuable remarks and comments brought improvements to the paper and enhance clarity.

J. Bory Reyes was partially supported by Instituto Politécnico Nacional in the framework of SIP programs.


  1. 1.
    Abreu, L.D.: Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions. Appl. Comp. Harm. Anal. 29, 287–302 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abreu Blaya, R., Ávila Ávila, R., Bory Reyes, J.: Boundary value problems with higher order Lipschitz boundary data for polymonogenic functions in fractal domains. Appl. Math. Comput. 269, 802–808 (2010)MathSciNetGoogle Scholar
  3. 3.
    Abreu Blaya, R., Bory Reyes, J.: The Plemelj–Privalov theorem in Clifford analysis. C. R. Acad. Sci. Paris Ser. I 347, 223–226 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Abreu Blaya, R.: Hölder norm estimate for the Hilbert transform in Clifford analysis. Bull. Braz. Math. Soc. New Ser. 41(3), 389–398 (2010)CrossRefGoogle Scholar
  5. 5.
    Abreu, L.D., Balazs, P., de Gosson, M., Mouayn, Z.: Discrete coherent states for higher Landau levels. Ann. Phys. 363, 337–353 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balk, B.M.: On polyanalytic functions. Akademie Verlag, Berlin (1991)zbMATHGoogle Scholar
  7. 7.
    Begehr, H.: Iterated integral operators in Clifford analysis. Z. Anal. Anwendungen 18(2), 361–377 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bory Reyes, J., De la Cruz Toranzo, L., Abreu Blaya, R.: Singular integral operator involving higher order Lipschitz classes. Mediterr. J. Math. 14, 38 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Research notes in mathematics, vol. 76. Pitman, Boston (1982)zbMATHGoogle Scholar
  10. 10.
    Brackx, F.: On (k)-monogenic functions of a quaternion variable, Funct. Theor. Methods Differ. Equat. 22–44, Res. Notes in Math., no. 8, Pitman, London (1976)Google Scholar
  11. 11.
    Brackx, F.: Non-(k)-monogenic points of functions of a quaternion variable, Funct. Theor. Meth. Part. Differ. Equat., Proc. int. Symp., Darmstadt, Lect. Notes Math. 561, 138–149, (1976)Google Scholar
  12. 12.
    Yude, B., Du, J.: The RH boundary value problem of the \(k\)-monogenic functions. J. Math. Anal. Appl. 347(2), 633–644 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cerejeiras, P., Kaehler, U., Min, K.: On the Riemann boundary value problem for null solutions to iterated generalized Cauchy-Riemann operator in Clifford analysis. Results Math. 63(3—-4), 1375–1394 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Falconer, K.J.: The geometry of fractal sets. Cambridge tracts in mathematics, vol. 85. Cambridge University Press, Cambridge (1986)Google Scholar
  15. 15.
    Santiesteban, T. R. Gómez, Blaya, R. Abreu, Reyes, J. Bory, Almira, J. M. Sigarreta: A Cauchy transform for polyanalytic functions on fractal domains. Ann. Polonici Mathematici. online: (19 December 2017)
  16. 16.
    Güerlebeck, K., Habetha, K., Sprössig, W.: Holomorphic functions in the plane and n-dimensional space. Birkhäuser Verlag, Basel (2008)Google Scholar
  17. 17.
    Iftimie, V.: Fonctions hypercomplexes. Bull. Math. de la Soc. Sci. Math. de la R. S. Roumanie 9, 279–332 (1965)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Harrison, J., Norton, A.: The Gauss-Green theorem for fractal boundaries. Duke Math. J. 67(3), 575–588 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Le, J., Jinyuan, D.: Riemann boundary value problems for some \(k\)-regular functions in Clifford analysis. Acta Math. Sci. Ser. B Engl. Ed. 32(5), 2029–2049 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kendig, K.: Hassler Whitney: 1907–1989, Celebratio Mathematica, 2013, available in
  21. 21.
    Ku, M., Fu, Y., Kaehler, U., Cerejeiras, P.: Riemann boundary value problems for iterated Dirac operator on the ball in Clifford analysis. Complex Anal. Oper. Theory 7(3), 673–693 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    McIntosh, A.: Clifford algebras and the higher dimensional Cauchy integral. Approx. Funct. Spaces 22, 253–267 (1989). (Warsaw: Banach Center Publ.)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mushelisvili, N.I.: Some basic problems of the mathematical theory of elasticity: fundamental equations plane theory of elasticity torsion and bending. Springer Netherlands, Dordrecht (1977)CrossRefGoogle Scholar
  24. 24.
    Ryan, J.: Basic Clifford analysis. Cubo Mat. Educ. 2, 226–256 (2000)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Stein, E.M.: Singular integrals and differentiability properties of functions, Princeton Math. Ser., vol. 30. Princeton Univ. Press, Princeton (1970)Google Scholar
  26. 26.
    Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento Licenciatura en MatemáticaUniversidad de HolguínHolguínCuba
  2. 2.SEPI-ESIME-ZAC-Instituto Politécnico NacionalCiudad MéxicoMéxico

Personalised recommendations