Advertisement

The Hardy–Littlewood Maximal Operator on Discrete Morrey Spaces

  • Hendra Gunawan
  • Christopher SchwankeEmail author
Article

Abstract

We discuss the Hardy–Littlewood maximal operator on discrete Morrey spaces of arbitrary dimension. In particular, we obtain its boundedness on the discrete Morrey spaces using a discrete version of the Fefferman–Stein inequality. As a corollary, we also obtain the boundedness of some Riesz potentials on discrete Morrey spaces.

Keywords

Discrete Morrey spaces Hardy–Littlewood maximal operator Riesz potential 

Mathematics Subject Classification

42B35 46B45 46A45 

Notes

References

  1. 1.
    Berezhnoi, E.I.: A discrete version of local Morrey spaces. Izv. Math. 81, 1 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. 7(3–4), 273–279 (1987)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Gunawan, H., Eridani, Nakai, E.: On generalized fractional integral operators. Scientiae Math. Japon. Online 10, 307–318 (2014)Google Scholar
  4. 4.
    Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93(1), 107–115 (1971)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gunawan, H., Kikianty, E., Schwanke, C.: Discrete Morrey spaces and their inclusion properties. Math. Nachr. 291(8–9), 1283–1296 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Magyar, A., Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis: spherical averages. Ann. Math. 155, 189–208 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis (Sendai, 1990), pp. 183–189, ICM-90 Satell. Conf. Proc., Springer, Tokyo (1991)Google Scholar
  8. 8.
    Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pierce, L.B.: Discrete analogues in harmonic analysis. Ph.D. Dissertation, Princeton University (2009)Google Scholar
  10. 10.
    Stein, E.M., Wainger, S.: Discrete analogues of singular Radon transform. Bull. Am. Math. Soc. 23, 537–544 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis I: \(\ell ^2\) estimates for singular Radon transforms. Am. J. Math. 21, 1291–1336 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis II: fractional integration. J. d’Analyse Math. 80, 335–355 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Stein, E.M., Wainger, S.: Two discrete fractional integral operators revisited. J. d’Analyse Math. 87, 451–479 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsBandung Institute of TechnologyBandungIndonesia
  2. 2.Department of MathematicsLyon CollegeBatesvilleUSA

Personalised recommendations