A Note on the Positivity of the Even Degree Complete Homogeneous Symmetric Polynomials
Article
First Online:
- 57 Downloads
Abstract
This article deals with the positivity of a nice family of symmetric polynomials, namely complete homogeneous symmetric polynomials. We are able to give a positive answer to a question arising in Tao (https://terrytao.wordpress.com/2017/08/06/schur-convexity-and-positive-definiteness-of-the-even-degree-complete-homogeneous-symmetric-polynomials/, 2017). Our strategy follows two different ideas, one of them based on a Schur-convexity argument and the other one uses a method with divided differences. Several Newton’s type inequalities are also discussed.
Keywords
Symmetric polynomials divided differences and Schur-convexityMathematics Subject Classification
Primary 26B25 Secondary 26D05 05E05Notes
References
- 1.Abramovich, S., Ivelić, S., Pečarić, J.E.: Improvement of Jensen-Steffensen’s inequality for superquadratic functions. Banach J. Math. Anal. 4(1), 159–169 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Adil Khan, M., Niezgoda, M., Pečarić, J.E.: On a refinement of the majorisation type inequality. Demonstr. Math. 44, 49–57 (2011)MathSciNetzbMATHGoogle Scholar
- 3.Ciobotea, D., Duica, L.: Visual impairment in the elderly and its influence on the quality of life. J. Res. Soc. Interv. 5(4), 66–74 (2016)Google Scholar
- 4.Duica, L., Antonescu, E.: Clinical and biochemical correlations of aggression in Young patients with mental disorders. J. Chem. 69, 1544–1549 (2018)Google Scholar
- 5.Hunter, D.B.: The positive-definiteness of the complete symmetric functions of even order. Math. Proc. Camb. Philos. Soc. 82(2), 255–258 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Ivelić Bradanović, S., Latif, N., Pečarić, D., Pečarić, J.: Sherman’s and related inequalities with applications in information theory. J. Inequal. Appl. 2018, 98 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Ivelić Bradanović, S., Latif, N., Pečarić, J.: On an upper bound for Sherman’s inequality. J. Inequal. Appl. 1, 165 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Ivelić Bradanović, S., Pečarić, J.: Generalizations of Sherman’s inequality. Period. Math. Hung. 74, 197–219 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Lemos, R., Soares, G.: Some log-majorizations and an extension of a determinantal inequality. Linear Algebra Appl. 547, 19–31 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Maclaurin, C.: A second letter to Martin Kolkes, Esq.; concerning the roots of equations, with the demonstration of other rules in algebra. Phil. Trans. 36, 59–96 (1729)Google Scholar
- 11.Marshall, A.W., Olkin, I., Arnold, B.: Inequalities: Theory of Majorization and Its Application, 2nd edn. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
- 12.Merca, M.: An infinite sequence of inequalities involving special values of the Riemann zeta function. Math. Ineq. Appl. 21(1), 17–24 (2018)MathSciNetzbMATHGoogle Scholar
- 13.Mutica, M., Duica, L.: Elderly schizophrenic patients? Clinical and social correlations. Eur. Neuropsychopharmacol. 26, S512 (2016)CrossRefGoogle Scholar
- 14.Newton, I.: Arithmetica universalis: sive de compositione et resolutione arithmetica liber Cantabrigi: typis academicis, Londini, impensis Benj. Tooke (1707)Google Scholar
- 15.Niculescu, C.P., Persson, L.-E.: Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics, vol. 23. Springer, New York (2006)zbMATHCrossRefGoogle Scholar
- 16.Niculescu, C.P., Rovenţa, I.: An approach of majorization in spaces with a curved geometry. J. Math. Anal. Appl. 411(1), 119–128 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Niezgoda, M.: Linear maps preserving group majorization. Linear Algebra Appl. 330, 113–127 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Niezgoda, M.: Majorization and refined Jensen-Mercer type inequalities for self-adjoint operators. Linear Algebra Appl. 467, 1–14 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Pales, Z., Radacsi, E.: Characterizations of higher-order convexity properties with respect to Chebyshev systems. Aequat. Math. 90, 193–210 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Popoviciu, T.: Notes sur le fonctions convexes d’ ordre superieur (IX). Bull. Math. Soc. Roum. Sci. 43, 85–141 (1941)zbMATHGoogle Scholar
- 21.Popoviciu, T.: Les Fonctions Convexes. Hermann, Paris (1944)zbMATHGoogle Scholar
- 22.Rovenţa, I.: Schur-convexity of a class of symmetric functions. Ann. Univ. Craiova Math. Comput. Sci. Ser. 37(1), 12–18 (2010)MathSciNetzbMATHGoogle Scholar
- 23.
Copyright information
© Springer Nature Switzerland AG 2018