Generalized Hölder Spaces of Holomorphic Functions in Domains in the Complex Plane

  • Alexey KarapetyantsEmail author
  • Stefan Samko


We study some nonstandard spaces of functions holomorphic in domains on the complex plain with certain smoothness conditions up to the boundary. The first type is the space of Hölder-type holomorphic functions with prescribed modulus of continuity \(\omega =\omega (h)\), and the second is the variable exponent holomorphic Hölder space with the modulus of continuity \(|h|^{\lambda (z)}\). We give a characterization of functions in these spaces in terms of the behavior of their derivatives near the boundary.


Hölder spaces holomorphic functions variable exponent spaces modulus of continuity 

Mathematics Subject Classification

30H20 46E30 46E15 



The study was supported by the Grant 18-01-00094-A of the Russian Foundation of Basic Research.


  1. 1.
    Chacon, G.R., Rafeiro, H.: Variable exponent Bergman spaces. Nonlinear Anal.: Theory, Methods Appl. 105, 41–49 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chacon, G.R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13(5), 3525–3536 (2016)Google Scholar
  3. 3.
    Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Springer Basel: Applied and Numerical Harmonic Analysis, Berlin (2013)Google Scholar
  4. 4.
    Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents, vol. 2017. Lecture Notes in Mathematics. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Duren, P., Schuster, A.: Bergman Spaces, vol. 100, Mathematical Surveys and Monographs. American Mathematics society, Providence (2004)Google Scholar
  6. 6.
    Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer, New York (2000)CrossRefGoogle Scholar
  7. 7.
    Karapetyants, A., Samko, S.: Spaces \(BMO_{p(\cdot )}({\mathbb{D}})\) of a variable exponent \(p(z).\) Georgian. Math. J. 17, 529–542 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Karapetyants, A., Samko, S.: Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in Hardy type spaces. Fract. Calc. Appl. Anal. 5, 1106–1130 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Karapetyants, A., Samko, S.: On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half plane and harmonic functions in half space. J. Math. Sci. 2264, 344–354 (2017).  (ISSN 1072-3374)
  10. 10.
    Karapetyants, A., Samko, S.: On mixed norm Bergman–Orlicz–Morrey spaces. Georgian Math. J. 25(2) (2018)Google Scholar
  11. 11.
    Karapetyants, A., Samko, S.: Mixed norm Bergman–Morrey type spaces on the unit disc. Math. Notes 100(1), 38–48 (2016) (ISSN: 0001-4346) Google Scholar
  12. 12.
    Karapetyants, A., Samko, S.: Mixed norm variable exponent Bergman space on the unit disc. Complex Var. Elliptic Equ. 61(8), 1090–1106 (2016) (ISSN:1747-6933) Google Scholar
  13. 13.
    Karapetyants, N.K., Ginzburg, A.I.: Fractional integrals and singular integrals in the Hoelder classes of variable order. Integral Transform. Spec. Funct. 2(2), 91–106 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces, vol. I: Variable Exponent Lebesgue and Amalgam Spaces. Operator Theory: Advances and Applications. Birkhäuser, Basel (2016)Google Scholar
  15. 15.
    Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces, vol. II: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces. Operator Theory: Advances and Applications. Birkhäuser Basel (2016)Google Scholar
  16. 16.
    Ross, B., Samko, S.: Fractional integration operator of variable order in the Hölder spaces \(H^{\lambda (x)}\). Internat. J. Math. Math. Sci. 18(4), 777–788 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Samko, S., Vakulov, B.: Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310(1), 229–246 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Samko, N.G.: Singular integral operators in weighted spaces with generalized Hölder condition. Proc. A. Razmadze Math. Inst 120, 107–134 (1999)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zhu, K.: Operator Theory in Function Spaces, 2nd edn. Mathematical Surveys and Monographs, vol. 138. American Mathematical Society, Providence (2007)Google Scholar
  20. 20.
    Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics. Springer, Berlin (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.State University of New YorkAlbanyUSA
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.University of AlgarveFaroPortugal

Personalised recommendations