Advertisement

Convergent and Asymptotic Methods for Second-order Difference Equations with a Large Parameter

  • Chelo Ferreira
  • José L. LópezEmail author
  • Ester Pérez Sinusía
Article
  • 39 Downloads

Abstract

We consider the second-order linear difference equation \(y(n+2)-2a y(n+1)-\Lambda ^2 y(n)=g(n)y(n)+f(n)y(n+1)\), where \(\Lambda \) is a large complex parameter, \(a\ge 0\) and g and f are sequences of complex numbers. Two methods are proposed to find the asymptotic behavior for large \(\vert \Lambda \vert \) of the solutions of this equation: (i) an iterative method based on a fixed point method and (ii) a discrete version of Olver’s method for second-order linear differential equations. Both methods provide an asymptotic expansion of every solution of this equation. The expansion given by the first method is also convergent and may be applied to nonlinear problems. Bounds for the remainders are also given. We illustrate the accuracy of both methods for the modified Bessel functions and the associated Legendre functions of the first kind.

Keywords

Second-order difference equations asymptotic expansions Green’s functions Olver’s method 

Mathematics Subject Classification

39A06 41A58 41A60 34B27 

References

  1. 1.
    Ahlbrandt, C.D., Peterson, A.C.: Discrete Hamiltonian Systems. Springer-Science+Busnisess Media, B.V., New York (1996)CrossRefGoogle Scholar
  2. 2.
    Alsharawi, Z., Cushing, J.M., Elaydi, S. Eds., Theory and Applications of Difference Equations and Discrete Dynamical Systems. In: Springer Proceedings in Mathematics and Statistics, Springer, New York (2013)Google Scholar
  3. 3.
    Cao, L., Li, Y.: Linear difference equations with a transition point at the origin. Anal. Appl. (Singap.) 12(1), 75–106 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cash, J.R.: An extension of Olver’s method for the numerical solution of linear recurrence relations. Math. Comput. 32(2), 497–510 (1978)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1960)zbMATHGoogle Scholar
  6. 6.
    Dunster, T.M.: Legendre and Related Functions, in NIST Handbook of Mathematical Functions, U.S. Department of Commerce, Washington, DC (2010). http://dlmf.nist.gov/14
  7. 7.
    Elaydi, S.: An Introduction to Difference Equations. Springer, New York (2005)zbMATHGoogle Scholar
  8. 8.
    Ferreira, C., López, J.L., Pérez Sinusía, E.: Convergent and asymptotic expansions of solutions of differential equations with a large parameter: Olver cases II and III. J. Integral Equ. Appl. 27(1), 27–45 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ferreira, C., López, J.L., Pérez Sinusía, E.: Convergent and asymptotic expansions of solutions of second-order differential equations with a large parameter. Anal. Appl. (Singap.) 12(5), 523–536 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fulford, G., Forrester, P., Jones, A.: Modeling with Differential and Difference Equations. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  11. 11.
    Geronimo, J.S., Smith, D.T.: WKB (Liouville-Green) analysis of second order difference equations and applications. J. Approx. Theory 69(3), 269–301 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
  13. 13.
    Goldberg, S.: Introduction to Difference Equations. Dover, New York (1986)Google Scholar
  14. 14.
    Jovanović, B.S.: Analysis of Finite Difference Schemes. Springer, London (2014)CrossRefGoogle Scholar
  15. 15.
    Kelley, W.G., Peterson, A.C.: Difference Equations. An Introduction with Applications. Academic Press, New York (1991)zbMATHGoogle Scholar
  16. 16.
    Koornwinder, T.H., Wong, R., Koekoek, R., Swarttouw, R.F.: Orthogonal Polynomials. In: NIST Handbook of Mathematical Functions, U.S. Department of Commerce, Washington, DC (2010). http://dlmf.nist.gov/10
  17. 17.
    Levy, A.: Economic Dynamics. Avebury, Hong Kong (1992)Google Scholar
  18. 18.
    López, J.L., Temme, N.: Approximations of orthogonal polynomials in term of Hermite polynomials. Meth. Appl. Anal. 6(2), 131–146 (1999)MathSciNetzbMATHGoogle Scholar
  19. 19.
    López, J.L.: Olver’s asymptotic method revisited. Case I. J. Math. Anal. Appl. 395(2), 578–586 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mickens, R.E.: Difference Equations. Theory, Applications and Advanced Topics. CRC Press, New York (2015)zbMATHGoogle Scholar
  21. 21.
    Olver, F.W.J.: Bounds for the solutions of second-order linear difference equations, TJ. Res. Nat. Bur. Stand. Sect. B 71B, 111–129 (1967)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Olver, F.W.J.: Numerical solution of second-order linear difference equations. TJ. Res. Nat. Bur. Stand. Sect. B 71B, 161–166 (1967)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)zbMATHGoogle Scholar
  24. 24.
    Olver, F.W.J., Maximon, L.C.: Bessel Functions, in NIST Handbook of Mathematical Functions, U.S. Department of Commerce, Washington, DC, (2010). http://dlmf.nist.gov/10
  25. 25.
    Sedaghat, H.: Nonlinear Difference Equations. Theory with Applications to Social Science Models. Springer-Science+Busnisess Media, B.V, New York (2003)zbMATHGoogle Scholar
  26. 26.
    Sharkovsky, A.N., Maistrenko, Y.L., Yu Romanenko, E.: Difference Equations and their Applications. Springer, Dordrecht (1993)CrossRefGoogle Scholar
  27. 27.
    Schwab, A.J.: Field Theory Concepts. Springer, New York (1988)CrossRefGoogle Scholar
  28. 28.
    Spigler, R., Vianello, M.: Liouville-Green approximations for a class of linear oscillatory difference equations of the second order. J. Comput. Appl. Math. 41(1–2), 105–116 (1992)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Spigler, R., Vianello, M., Locatelli, F.: Liouville-Green-Olver approximations for complex difference equations. J. Approx. Theory 96(2), 301–322 (1999)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, New York (2012)zbMATHGoogle Scholar
  31. 31.
    Wong, R.: Asymptotics of linear recurrences. Anal. Appl. (Singap.) 12(4), 463–484 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dpto. de Matemática Aplicada, IUMAUniversidad de ZaragozaZaragozaSpain
  2. 2.Dpto. de Ingeniería Matemática e InformáticaUniversidad Pública de Navarra and INAMATPamplonaSpain

Personalised recommendations