Advertisement

Generalized Bernstein Operators on the Classical Polynomial Spaces

  • J. M. AldazEmail author
  • H. Render
Article
  • 40 Downloads

Abstract

We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.

Keywords

Bernstein polynomial Bernstein operator 

Mathematics Subject Classification

Primary 41A10 

References

  1. 1.
    Acar, T., Aral, A., Gonska, H.: On Szász-Mirakyan operators preserving \(e^{2ax}\), \( a>0\). Mediterr. J. Math. (2017).  https://doi.org/10.1007/s00009-016-0804-7
  2. 2.
    Ait-Haddou, R., Mazure, M.-L.: Approximation by Chebyshevian Bernstein operators versus convergence of dimension elevation. Constr. Approx. 43(3), 425–461 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aldaz, J.M., Kounchev, O., Render, H.: Bernstein operators for exponential polynomials. Constr. Approx. 29(3), 345–367 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aldaz, J.M., Kounchev, O., Render, H.: Shape preserving properties of Bernstein operators on extended Chebyshev spaces. Numer. Math. 114(1), 1–25 (2009). Available at the Mathematics ArXiv since May 12, 2008 (first version)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aldaz, J.M., Kounchev, O., Render, H.: Bernstein operators for extended Chebyshev systems. Appl. Math. Comput. 217(2), 790–800 (2010). Available at the Mathematics ArXiv since May 12, 2008MathSciNetzbMATHGoogle Scholar
  6. 6.
    Aldaz, J.M., Render, H.: Optimality of generalized Bernstein operators. J. Approx. Theory 162(7), 1407–1416 (2010). Available at the Mathematics ArXiv since May 12, 2008MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bernstein, S.: Sur la représentation des polynômes positifs. Soobshch. Kharkov matem. ob-va, ser. 2 2(14), 227–228 (1915)zbMATHGoogle Scholar
  8. 8.
    Bernstein, S.: Sur les séries normales. In: D’Adhemar, R. (ed.) Lecons Sur Les Principes de L’Analyse, vol. 2. Gauthier-Villars, Paris (1913)Google Scholar
  9. 9.
    Bessenyei, M., Páles, Z.: Hadamard-type inequalities for generalized convex functions. Math. Inequal. Appl. 6, 379–392 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29(6), 379–419 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Finta, Z.: Bernstein type operators having 1 and \(x^j\) as fixed points. Cent. Eur. J. Math. 11(12), 2257–2261 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    King, J.P.: Positive linear operators which preserve \(x^2\). Acta Math. Hung. 99, 203–208 (2003)CrossRefGoogle Scholar
  13. 13.
    Kounchev, O., Render, H.: On the Bernstein operator of S. Morigi and M. Neamtu. Results Math. 53, 311–322 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mazure, M.-L.: Bernstein-type operators in Chebyshev spaces. Numer. Algorithms 52(1), 93–128 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Morigi, S., Neamtu, M.: Some results for a class of generalized polynomials. Adv. Comput. Math. 12, 133–149 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Powers, V., Reznick, B.: Polynomials that are positive on an interval. Trans. Am. Math. Soc. 352(10), 4677–4692 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pólya, G., Szegö, G.: Problems and Theorems in Analysis. II. Classics in Mathematics. Springer, Berlin (1998)CrossRefGoogle Scholar
  18. 18.
    Render, H.: Convergence of rational Bernstein operators. Appl. Math. Comput. 232, 1076–1089 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sikkema, P.C.: Über den Grad der Approximation mit Bernstein-Polynomen. Numer. Math. 1, 221–239 (1959)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Der Sikkema, P.C.: Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen. Numer. Math. 3, 107–116 (1961)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain
  2. 2.School of Mathematical SciencesUniversity College DublinDublin 4Ireland

Personalised recommendations