Advertisement

Solvability and Stability for Neutral Stochastic Integro-differential Equations Driven by Fractional Brownian Motion with Impulses

  • Pengju Duan
  • Yong Ren
Article
  • 87 Downloads

Abstract

The paper is devoted to the existence, uniqueness and asymptotic behaviors of mild solution to neutral impulsive stochastic integro-differential equations driven by fractional Brownian motion with \(H\in (\frac{1}{2},1)\) by the theory of resolvent operator and contraction mapping principle. An example is provided to demonstrate the results of the proposed results.

Keywords

Fractional Brownian motion resolvent operator neutral stochastic integro-differential equations mild solution existence 

Mathematics Subject Classification

60H15 35B35 39B82 93E03 

References

  1. 1.
    Arthi, G., Ju, H., Jung, H.: Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion. Commun. Nonlinear Sci. Numer. Simul. 32, 145–157 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boufoussi, B., Hajji, S.: Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Stat. Probab. Lett. 82(8), 1549–1558 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Caraballo, T., Garrido-Atienza, M.J., Taniguchi, T.: The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal. 74(11), 3671–3684 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caraballo, T., Diop, M.: Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion. Front. Math. China. 8(4), 745–760 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chakravarti, N., Sebastian, K.: Fractional Brownian motion models for polymers. Chem. Phys. Lett. 267, 9–13 (1997)CrossRefGoogle Scholar
  6. 6.
    Chen, G.: Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17(1), 66–81 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Christodoulou-Volos, C., Siokis, F.M.: Long range dependence in stock market returns. Appl. Financ. Econ. 16, 1331–1338 (2006)CrossRefGoogle Scholar
  8. 8.
    Cui, J., Wang, Z.: Nonlocal stochastic integro-differential equations driven by fractional Brownian motion. Adv. Differ. Equ. 2016(1), 1–14 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Diop, M., Sakthivel, R., Ndiaye, A.: Neutral stochastic integrodifferential equations driven by a fractional Brownian motion with impulsive effects and time-varying Delays. Mediterr. J. Math. 13(5), 2425–2442 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Duncan, T.E., Maslowski, B., Pasik-Duncan, B.: Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise. Stoch. Process. Appl. 115(8), 1357–1383 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ferrante, M., Rovira, C.: Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter \(H>\frac{1}{2}\). Bernouilli 12, 85–100 (2006)zbMATHGoogle Scholar
  12. 12.
    Grimmer, R.: Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. 273, 333–349 (1982)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hu, Y., Oksendal, B.: Fractional white noise calculus and application to finance. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 1-32 (2003)Google Scholar
  14. 14.
    Liang, J., Liu, J.H., Xiao, T.J.: Nonlocal problems for integrodifferential equations. Dynamics of Continuous, Discrete and Impulsive Systems. Series A. Math. Anal. 15, 815–824 (2008)Google Scholar
  15. 15.
    Li, Z.: Global attractiveness and quasi-invariant sets of impulsive neutral stochastic functional differential equations driven by fBm. Neurocomputing 177, 620–627 (2016)CrossRefGoogle Scholar
  16. 16.
    Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)zbMATHGoogle Scholar
  17. 17.
    Mishura, Y.: Stochastic calculus for fractional Brownian motion and related processes. In: Morel, J.M., Takens, F., Teissier, B. (eds.) Lecture Notes in Mathematics, vol. 1929. Springer, Berlin (2008)Google Scholar
  18. 18.
    Nguyen, T.: Neutral stochastic differential equations driven by a fractional Brownian motion with impulsive effects and varying-time delays. J. Korean Stat. Soc. 43(4), 599–608 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pruss, J.: Evolutionary Integral Equations and Applications. Birkhauser, Basel (1993)CrossRefGoogle Scholar
  20. 20.
    Ren, Y., Hou, T., Sakthivel, R.: Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay. Front. Math. China. 10(2), 351–365 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Scheffer, R., Maciel, F.: The fractional Brownian motion as a model for an industrial airlift reactor. Chem. Eng. Sci. 56, 707–711 (2001)CrossRefGoogle Scholar
  22. 22.
    Tindel, S., Tudor, C., Viens, F.: Stochastic evolution equations with fractional Brownian motion. Probab. Theory Relat. Fields. 127, 186–204 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsSuzhou UniversitySuzhouChina
  2. 2.Department of MathematicsAnhui Normal UniversityWuhuChina

Personalised recommendations