Density Intervals of Zeros of the Partial Sums of the Dirichlet Eta Function



It is shown that the set \(R_{n}:=\overline{\{ \mathfrak {R}z:\eta _{n}(z)=0\} }\) contains an interval \([ \alpha _{n},b_{n}] \) for some \(\alpha _{n}<0\) and \(0<b_{n}:=\sup \{ \mathfrak {R}z:\eta _{n}(z)=0\} \), where \(\eta _{n}(z):=\sum _{j=1}^{n}(-1)^{j-1}/j^{z}\) is the \(n^{\text {th}}\), \(n>2\), partial sum of the Dirichlet eta function \(\eta (z):=\sum _{j=1}^{\infty }(-1)^{j-1}/j^{z}\). It means that in the strip \([ \alpha _{n},b_{n}] \times \mathbb {R}\) no vertical sub-strip is zero-free for \(\eta _{n}(z)\), \(n>2\). Since \(\liminf _ {n\rightarrow \infty }b_{n}\ge 1\), that property is, in particular, asymptotically true for the partial sums \(\eta _{n}(z)\) in the critical strip \(( 0,1) \times \mathbb {R}\).


Zeros of the partial sums of the eta function Exponential polynomials Diophantine approximation 

Mathematics Subject Classification

Primary: 11M26 Secondary: 11Lxx 11Jxx 



This work was partially supported by a grant from Ministerio de Economía y Competitividad, Spain (MTM 2014-52865-P).


  1. 1.
    Ash, R.B.: Complex variables. Academic Press, New York (1971)zbMATHGoogle Scholar
  2. 2.
    Bateman, P.T., Diamond, H.G.: Analytic number theory. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  3. 3.
    Bohr, H.: Almost periodic functions. Chelsea, New York (1947)zbMATHGoogle Scholar
  4. 4.
    Corduneanu, C.: Almost periodic functions. Interscience Publishers, Geneva (1968)zbMATHGoogle Scholar
  5. 5.
    Edwards, H.M.: Riemann’s zeta function. Dover Pub. Inc., New York (2001)zbMATHGoogle Scholar
  6. 6.
    Farag, H.M.: Dirichlet truncations of the Riemann zeta function in the critical strip possess zeros near every vertical line. Int. J. Number Theory 4(4), 653–662 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Clarendon Press, Oxford (1954)zbMATHGoogle Scholar
  8. 8.
    Mora, G.: A note on the functional equation \(F(z)+F(2z)+\ldots +F(nz)=0\). J. Math. Anal. Appl. 340(1), 466–475 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mora, G., Sepulcre, J.M., Vidal, T.: On the existence of exponential polynomials with prefixed gaps. Bull. Lond. Math. Soc. 45, 1148–1162 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mora, G.: Accumulation points of the sets of real parts of zeros of the partial sums of the Riemann zeta function. arXiv:1311.5171 [math.CV] (2013)
  11. 11.
    Mora, G.: On the closure of the real parts of the zeros of a class of exponential polynomials. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A.
  12. 12.
    Ritt, J.F.: On the zeros of exponential polynomials. Trans. Am. Math. Soc. 31, 680–686 (1929)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Turán, P.: On some approximate Dirichlet polynomials in the theory of the zeta-function of Riemann. Danske Vid Selsk. Mat. Fys. Medd. 24(17), 3–36 (1948)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias IIUniversidad de Alicante-Departamento de MatemáticasAlicanteSpain

Personalised recommendations