Split Null Point Problems and Fixed Point Problems for Demicontractive Multivalued Mappings

  • Pachara Jailoka
  • Suthep SuantaiEmail author


In this paper, we consider the split null point problem and the fixed point problem for multivalued mappings in Hilbert spaces. We introduce a Halpern-type algorithm for solving the problem for maximal monotone operators and demicontractive multivalued mappings, and establish a strong convergence result under some suitable conditions. Also, we apply our problem of main result to other split problems, that is, the split feasibility problem, the split equilibrium problem, and the split minimization problem. Finally, a numerical result for supporting our main result is also supplied.


Split null point problems fixed point problems demicontractive multivalued mappings maximal monotone operators strong convergence 

Mathematics Subject Classification

47H10 47J25 54H25 



The authors would like to thank the referees for valuable comments and suggestions for improving this work and Chiang Mai University for the financial support.


  1. 1.
    Alofi, A., Alsulami, S.M., Takahashi, W.: The split common null point problem and Halpern-type strong convergence theorem in Hilbert spaces. J. Nonlinear Convex Anal. 16, 775–789 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alsulami, S.M., Takahashi, W.: The split common null point problem for maximal monotone mappings in Hilbert spaces and applications. J. Nonlinear Convex Anal. 15, 793–808 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Problems 18, 441–453 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 20, 103–120 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)CrossRefGoogle Scholar
  6. 6.
    Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp. 155–270. Academic Press, New York (1996)Google Scholar
  8. 8.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Problems 21, 2071–2084 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Censor, Y., Borteld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therepy. Phys. Med. Biol. 51, 2353–2365 (2006)CrossRefGoogle Scholar
  12. 12.
    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chidume, C.E., Bello, A.U., Ndambomve, P.: Strong and \(\Delta \)-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces. Abstr. Appl. Anal. 2014, Article ID 805168 (2014). MathSciNetCrossRefGoogle Scholar
  14. 14.
    Combettes, P.L., Hirstoaga, A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. Fixed Point Algorithms Inverse Problems Sci. Eng. 49, 185–212 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Eslamian, M., Vahidi, J.: Split common fixed point problem of nonexpansive semigroup. Mediterr. J. Math. 13, 1177–1195 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Eslamian, M., Eskandani, G.Z., Raeisi, M.: Split common null point and common fixed point problems between Banach spaces and Hilbert spaces. Mediterr. J. Math. 14, 119 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gibali, A.: A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2, 243–258 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hicks, T.L., Kubicek, J.D.: On the Mann iteration process in a Hilbert space. J. Math. Anal. Appl. 59, 498–504 (1977)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Isiogugu, F.O., Osilike, M.O.: Convergence theorem for new classes of multivalued hemicontractive-type mappings. Fixed Point Theory Appl. 2014, 93 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jailoka, P., Suantai, S.: Split common fixed point and null point problems for demicontractive operators in Hilbert spaces. Optim. Methods Softw. (2017). CrossRefGoogle Scholar
  23. 23.
    Kazmi, K.R., Rizvi, S.H.: Iterative approximation of a common solution of a split equilibrium problem, a variational inequality problem and a fixed point problem. J. Egypt. Math. Soc. 21, 44–51 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Măruşter, Ş.: The solution by iteration of nonlinear equations in Hilbert spaces. Proc. Am. Math. Soc. 63, 69–73 (1977)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set Valued Anal. 16, 899–912 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Paci. J. Math. 33, 209–216 (1970)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Song, Y., Cho, Y.J.: Some note on Ishikawa iteration for multi-valued mappings. Bull. Korean Math. Soc. 48, 575–584 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Suantai, S., Cholamjiak, P., Cho, Y.J., Cholamjiak, W.: On solving split equilibrium problems and fixed point problems of nonspreading multi-valued mappings in Hilbert spaces. Fixed Point Theory Appl. (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Singthong, U., Suantai, S.: Equilibrium problems and fixed point problems for nonspreading-type mappings in Hilbert space. Int. J. Nonlinear Anal. Appl. 2, 51–61 (2011)zbMATHGoogle Scholar
  30. 30.
    Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65, 281–287 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Takahashi, S., Takahashi, W., Toyoda, M.T.: Strong convergence theoremrem for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27–41 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Takahashi, W., Xu, H.K., Yao, J.C.: Iterative methods for generalized split feasibility problems in Hilbert spaces. Set Valued Var. Anal. 23, 205–221 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tufa, A.R., Zegeye, H., Thuto, M.: Convergence theoremrems for non-self mappings in CAT(0) Spaces. Numer. Funct. Anal. Optim. 38, 705–722 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Program in Mathematics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Center of Excellence in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations