Asymptotic Behavior of Solutions for a Class of Fractional Integro-differential Equations

  • Ahmad M. AhmadEmail author
  • Khaled M. Furati
  • Nasser-Eddine Tatar


In this paper, we study the asymptotic behavior of solutions for a general class of fractional integro-differential equations. We consider the Caputo fractional derivative. Reasonable sufficient conditions under which the solutions behave like power functions at infinity are established. For this purpose, we use and generalize some well-known integral inequalities. It was found that the solutions behave like the solutions of the associated linear differential equation with zero right hand side. Our findings are supported by examples.


Asymptotic behavior fractional integro-differential equation Caputo fractional derivative integral inequalities nonlocal source 

Mathematics Subject Classification

34A08 35B40 26D10 



The authors would like to acknowledge the support provided by King Fahd University of Petroleum and Minerals (KFUPM) through project number IN161010.


  1. 1.
    Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109(3), 973–1033 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agarwal, R.P., Ntouyas, S.K., Ahmad, B., Alhothuali, M.S.: Existence of solutions for integro-differential equations of fractional order with nonlocal three-point fractional boundary conditions. Adv. Differ. Equ. 2013(1), 1–9 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aghajani, A., Jalilian, Y., Trujillo, J.: On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15(1), 44–69 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ahmad, A.M., Furati, K.M., Tatar, N.E.: Asymptotic power type behavior of solutions to a nonlinear fractional integro-differential equation. Electron. J. Differ. Equ. 2017(134), 1–16 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Alsaedi, A.: Existence of solutions for integrodifferential equations of fractional order with antiperiodic boundary conditions. Int. J. Differ. Equ. 2009 (2009)Google Scholar
  6. 6.
    Anguraj, A., Karthikeyan, P., Trujillo, J.: Existence of solutions to fractional mixed integrodifferential equations with nonlocal initial condition. Adv. Differ. Equ. 2011(1), 690,653 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Băleanu, D., Mustafa, O.G., Agarwal, R.P.: Asymptotic integration of (1+ \(\alpha \))-order fractional differential equations. Comput. Math. Appl. 62(3), 1492–1500 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Baleanu, D., Nazemi, S.Z., Rezapour, S.: The existence of positive solutions for a new coupled system of multiterm singular fractional integrodifferential boundary value problems. Abstr. Appl. Anal. 2013, 15 (2013). (Article ID 368659)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Brestovanska, E., Medved’, M.: Asymptotic behavior of solutions to second-order differential equations with fractional derivative perturbations. Electron. J. Differ. Equ. 2014(201), 1–10 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cheng, Y.W., Ding, H.S.: Asymptotic behavior of solutions to a linear Volterra integrodifferential system. Abstr. Appl. Anal. 2013, 5 (2013). (Article ID 245905)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dannan, F.M.: Integral inequalities of Gronwall–Bellman–Bihari type and asymptotic behavior of certain second order nonlinear differential equations. J. Mat. Anal. Appl. 108(1), 151–164 (1985)MathSciNetCrossRefGoogle Scholar
  12. 12.
    De Barra, G.: Measure Theory and Integration. Elsevier, Oxford (2003)CrossRefGoogle Scholar
  13. 13.
    Furati, K.M., Tatar, N.: Behavior of solutions for a weighted Cauchy-type fractional differential problem. J. Fract. Calc. 28, 23–42 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Grace, S.R.: On the oscillatory behavior of solutions of nonlinear fractional differential equations. Appl. Math. Comput. 266, 259–266 (2015)MathSciNetGoogle Scholar
  15. 15.
    Halanay, A.: On the asymptotic behavior of the solutions of an integro-differential equation. J. Math. Anal. Appl. 10(2), 319–324 (1965)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kendre, S., Jagtap, T., Kharat, V.: On nonlinear fractional integrodifferential equations with non local condition in Banach spaces. Nonlinear Anal. Differ. Equ. 1, 129–141 (2013)CrossRefGoogle Scholar
  17. 17.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Oxford (2006)CrossRefGoogle Scholar
  18. 18.
    Kirane, M., Medved, M., Tatar, N.: Semilinear Volterra integrodifferential problems with fractional derivatives in the nonlinearities. Abstr. Appl. Anal. 2011, 11 (2011). (Article ID 510314)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kusano, T., Trench, W.F.: Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations. Ann. Mat. Pura Appl. 142(1), 381–392 (1985)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lang, S.: Fundamentals of Differential Geometry. Volume 191 of Graduate Texts in Mathematics. Springer, New York (1999)CrossRefGoogle Scholar
  21. 21.
    Levin, J.: The asymptotic behavior of the solution of a Volterra equation. Proc. Am. Math. Soc. 14(4), 534–541 (1963)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Medved’, M., Pospíšil, M.: Asymptotic integration of fractional differential equations with integrodifferential right-hand side. Math. Model. Anal. 20(4), 471–489 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Medved, M.: On the asymptotic behavior of solutions of nonlinear differential equations of integer and also of non-integer order. Electron. J. Qual. Theory Differ. Equ. 10, 1–9 (2012)zbMATHGoogle Scholar
  24. 24.
    Medved, M.: Asymptotic integration of some classes of fractional differential equations. Tatra Mt. Math. Publ. 54(1), 119–132 (2013)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Medved, M., Moussaoui, T.: Asymptotic integration of nonlinear \(\phi \)-Laplacian differential equations. Nonlinear Anal. Theory Methods Appl. 72(3), 2000–2008 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mustafa, O.G., Baleanu, D.: On the Asymptotic Integration of a Class of Sublinear Fractional Differential Equations. arXiv:0904.1495 (2009) (arXiv preprint)
  27. 27.
    Mustafa, O.G., Rogovchenko, Y.V.: Asymptotic integration of a class of nonlinear differential equations. Appl. Math. Lett. 19(9), 849–853 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pinto, M.: Integral inequalities of Bihari-type and applications. Funkc. Ekvacioj 33(3), 387–403 (1990)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Royden, H.L., Fitzpatrick, P.: Real Analysis, vol. 198. Macmillan, New York (1988)zbMATHGoogle Scholar
  30. 30.
    Tatar, N.: Existence results for an evolution problem with fractional nonlocal conditions. Comput. Math. Appl. 60(11), 2971–2982 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ahmad M. Ahmad
    • 1
    Email author
  • Khaled M. Furati
    • 1
  • Nasser-Eddine Tatar
    • 1
  1. 1.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations