Advertisement

Spectrums of Functions Associated to the Fractional Clifford–Fourier Transform

  • Shanshan Li
  • Jinsong Leng
  • Minggang FeiEmail author
Article
  • 31 Downloads

Abstract

In this paper, we prove several versions of the real Paley–Wiener theorems for a fractional Clifford–Fourier transform which depends on two numerical parameters and paves the way in some sense for a functional calculus approach to generalizing the Fourier transform to Clifford analysis.

Keywords

Clifford analysis Fractional Clifford–Fourier transform Real Paley–Wiener theorem 

Mathematics Subject Classification

42B10 30G30 

Notes

References

  1. 1.
    Andersen, N.B.: Real Paley–Wiener theorems. Bull. Lond. Math. Soc. 36, 504–508 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andersen, N.B.: Real Paley–Wiener theorems for the Dunkl transform on \({{\mathbb{R}}}\). Integral Transform Spec. Funct. 17, 543–547 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andersen, N.B., de Jeu, M.: Real Paley–Wiener theorems and local spectral radius formulas. Trans. Am. Math. Soc. 362, 3613–3640 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bang, H.H.: A property of infinitely differentiable functions. Proc. Am. Math. Soc. 108, 73–76 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Research Notes in Mathematics 76. Boston, MA: Pitman (Advanced Publishing Program) (1982)Google Scholar
  6. 6.
    Brackx, F., De Schepper, N., Sommen, F.: The Clifford–Fourier transform. J. Fourier Anal. Appl. 11(6), 669–681 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford–Fourier transform. J. Math. Imaging Vision 26(1–2), 5–18 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–203 (2008)CrossRefGoogle Scholar
  9. 9.
    Chen, Q.H., Li, L.Q., Ren, G.B.: Generalized Paley–Wiener theorems. Int. J. Wavelets, Multiresolut. Inf. Process. 10(2), 1250020 (2012) (7 pages)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chettaoui, C., Othmani, Y., Triméche, K.: On the range of the Dunkl transform on \({\mathbb{R}}\). Appl. Anal. (Singap.) 2(3), 177–192 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    De Bie, H., Xu, Y.: On the Clifford–Fourier transform. Int. Math. Res. Not. IMRN 22, 5123–5163 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    De Bie, H., De Schepper, N.: The fractional Clifford–Fourier transform. Complex Anal. Oper. Theory 6(5), 1047–1067 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    De Bie, H., De Schepper, N., Sommen, F.: The class of Clifford–Fourier transforms. J. Fourier Anal. Appl. 17(6), 1198–1231 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Delanghe, R., Sommen, F., Soucek, V.: Clifford algebra and spinor valued functions: a function theory for Dirac operator. Kluwer, Dordrecht (1992)CrossRefGoogle Scholar
  15. 15.
    Fei, M., Xu, Y., Yan, J.: Real Paley–Wiener theorem for the quaternion Fourier transform. Complex Var. Elliptic Equ. 62(8), 1072–1080 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fu, Y.X., Li, L.Q.: Paley–Wiener and Boas theorems for the quaternion Fourier transform. Adv. Appl. Clifford Algebr. 23(4), 837–848 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fu, Y.X., Li, L.Q.: Real Paley–Wiener theorems for the Clifford Fourier transform. Sci. China Math. 57(11), 2381–2392 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kou, K.-I., Qian, T.: The Paley–Wiener theorem in \({\mathbb{R}}^n\) with the Clifford analysis setting. J. Funct. Anal. 189(1), 227–241 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, S., Leng, J., Fei, M.: Paley–Wiener-type theorems for the Clifford-Fourier transform. Math. Methods Appl. Sci. 42(18), 6101–6113 (2019)CrossRefGoogle Scholar
  20. 20.
    Paley, R., Wiener, N.: The Fourier transforms in the complex domain, Amer. Math. Soc., Colloq. Publ. Ser., Vol. 19, Providence, RI (1934)Google Scholar
  21. 21.
    Qian, T.: Paley-Wiener theorems and Shannon sampling in Clifford analysis setting. Clifford algebras (Cookeville, TN, 2002), 115-124, Prog. Math. Phys., 34, Birkhser Boston, Boston, MA (2004)Google Scholar
  22. 22.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton (1971)zbMATHGoogle Scholar
  23. 23.
    Tuan, V.K.: On the Paley-Wiener theorem, In: Theory of Functions and Applications. Collection of Works dedicated to the Memory of Mkhitar M. Djrbashian, Louys Publishing House, Yerevan, pp. 193–196 (1995)Google Scholar
  24. 24.
    Tuan, V.K.: On the range of the Hankel and extended Hankel transforms. J. Math. Anal. Appl. 209, 460–478 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tuan, V.K.: Paley–Wiener-type theorems. Fract. Calc. Appl. Anal. 2, 135–143 (1999)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Tuan, V.K.: On the supports of functions. Numer. Funct. Anal. Optim. 20, 387–394 (1999)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tuan, V.K.: Paley–Wiener and Boas theorems for singular Sturm–Liouville integral transforms. Adv. Appl. Math. 29, 563–580 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tuan, V.K.: A real-variable Paley–Wiener theorem for the Dunkl transform, Abstract and Applied Analysis, 365–371. World Sci. Publ, River Edge, NJ (2004)Google Scholar
  29. 29.
    Tuan, V.K., Zayed, A.I.: Paley-Wiener-type theorem for a class of integral transforms arising from a singular Dirac system. Z. Anal. Anwendungen 19, 695–712 (2000)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tuan, V.K., Zayed, A.I.: Generalization of a theorem of Boas to a class of integral transforms. Results Math. 38, 362–376 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yang, Y., Qian, T.: Schwarz lemma in Euclidean spaces. Complex Var. Elliptic Eq. 51(7), 653–659 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations