Donoho–Stark’s Uncertainty Principles in Real Clifford Algebras

  • Youssef El HaouiEmail author
  • Said Fahlaoui


The Clifford Fourier transform (CFT) has been shown to be a powerful tool in the Clifford analysis. In this work, several uncertainty inequalities are established in the real Clifford algebra \(Cl_{(p,q)}\), including the Hausdorf–Young inequality, and three qualitative uncertainty principles of Donoho–Stark.


Clifford algebras Clifford-Fourier transform Uncertainty principle Donoho–Stark’s uncertainty principle 



The authors are grateful to the referees for carefully reading the paper and for elaborating the valuable suggestions and comments.


  1. 1.
    Brackx, F., De Schepper, N., Sommen, F.: The Clifford Fourier transform. J. Fourier Anal. Appl. 6(11), 668–681 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–201 (2009)CrossRefGoogle Scholar
  3. 3.
    Chen, L.P., Kou, K.I., Liu, M.S.: Pitt’s inequality and the uncertainty principle associated with thequaternion Fourier transform. J. Math. Anal. Appl. 423, 681–700 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hitzer, E.: The Clifford Fourier transform in real Clifford algebras, In: E. Hitzer, K. Tachibana (eds.), “Session on geometric algebra and applications, IKM 2012”, Special Issue of Clifford analysis, Clifford algebras and their applications, Vol. 2, No. 3, pp. 227–240, (2013). First published in K. Guerlebeck, T. Lahmer and F. Werner (eds.), electronic Proc. of 19th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, IKM 2012, Weimar, Germany, 0406 July 2012. Preprint:
  6. 6.
    Hitzer, E., Mawardi, B.: Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n = 2(mod4) and n = 3(mod4). Adv. Appl. Clifford Algebra 18, 715–736 (2008)CrossRefGoogle Scholar
  7. 7.
    Lian, P.: Uncertainty principle for the quaternion Fourier transform. J. Math. Anal. Appl. (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Publicações Matemáticas, IMPA, Rio de Janeiro (2004)zbMATHGoogle Scholar
  9. 9.
    Mawardi, B., Hitzer, E.M.: Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl(3, 0). Adv. Appl. Clifford Algebra 16, 41–61 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Murray, M.: Clifford algebras and Dirac operators in harmonic analysis, cambridge. University Press, First published (1991)Google Scholar
  11. 11.
    Soltani, F.: \(L^P\) Donoho–Stark Uncertainty Principles for the Dunkl Transform on \(\mathbb{R}^d\). J. Phys. Math. 05, 127 (2014). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Sciences, Faculty of SciencesUniversity Moulay IsmailMeknesMorocco

Personalised recommendations