Szegö–Radon Transform for Biaxially Monogenic Functions
Article
First Online:
- 54 Downloads
Part of the following topical collections:
Abstract
In this paper we introduce the Szegö–Radon transform for biaxially monogenic functions, which are calculated explicitly for the two types of biaxially monogenic functions. To simplify these results, we make use of the Funk–Hecke theorem to obtain Vekua systems in two real variables. Using the biaxial decomposition of inner spherical monogenics in biaxially symmetric domain, we obtain the biaxial decomposition of Szegö–Radon transform.
Keywords
Clifford analysis Szegö–Radon transform Biaxially monogenic functions Vekua systemMathematics Subject Classification
Primary 44A12 Secondary 30G35Notes
Acknowledgements
The first author is supported by China Scholarship Council (CSC).
References
- 1.Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge, Encyclopedia of mathematics and its applications (2006) Google Scholar
- 2.Bateman, H. (ed.): Higher Transcendental Functions, vol. 1. Krieger, Malabar, Fla, Bateman Manuscript Project (1981)Google Scholar
- 3.Brackx, F., Delanghe , R., Sommen, F.: Clifford Analysis. Pitman Advanced Pub. Program, Boston, Research notes in mathematics (1982)Google Scholar
- 4.Bures, J., Lavicka, R., Soucek, V.: Elements of Quaternionic Analysis and Radon Transform. Departamento de Matemática da Universidade de Coimbra, Textos de Matematica (2009)Google Scholar
- 5.Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)MathSciNetCrossRefGoogle Scholar
- 6.Colombo, F., Lávička, R., Sabadini, I., Souček, V.: The Radon transform between monogenic and generalized slice monogenic functions. Math. Ann. 3, 733–752 (2015)MathSciNetCrossRefGoogle Scholar
- 7.Colombo, F., Sabadini, I., Sommen, F.: On the Szegö–Radon projection of monogenic functions. Adv. Appl. Math. 74, 1–22 (2016)MathSciNetCrossRefGoogle Scholar
- 8.Common, A.K., Sommen, F.: Axial monogenic functions from holomorphic functions. J. Math. Anal. Appl. 179, 610–629 (1993)MathSciNetCrossRefGoogle Scholar
- 9.Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. Springer, Dordrecht (1992)CrossRefGoogle Scholar
- 10.Delanghe, R.: Clifford analysis: history and perspective. Comput. Methods Funct. Theory 1, 107–153 (2001)MathSciNetCrossRefGoogle Scholar
- 11.Delanghe , R., Sommen, F.: Spingroups and Spherical Monogenics. Clifford Algebras and Their Applications in Mathematical Physics, 115–132. Springer, Dordrecht (1986)CrossRefGoogle Scholar
- 12.Fueter, R.: Die Funktionentheorie der Differentialgleichungen \(\Delta =0\) und \(\Delta \Delta u=0\) mit vier reellen Variablen. Commentarii Mathematici Helvetici 7, 307–330 (1934)MathSciNetCrossRefGoogle Scholar
- 13.Gilbert, J., Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
- 14.Gel’fand, I.M., Shilov, G.E.: Generalized functions. AMS Chelsea Publishing, American Mathematical Society, Providence (2016)Google Scholar
- 15.Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2011)CrossRefGoogle Scholar
- 16.Helgason, S.: The Radon Transform. Birkhäuser, Basel (1999)CrossRefGoogle Scholar
- 17.Hochstadt, H.: The Functions of Mathematical Physics. Wiley-Interscience, New York (1971)zbMATHGoogle Scholar
- 18.Jank, G., Sommen, F.: Clifford analysis, biaxial symmetry and pseudoanalytic functions. Complex Var. Theory Appl. Int. J. 13, 195–212 (1990)MathSciNetzbMATHGoogle Scholar
- 19.Moisil, G.C., Théodoresco, N.: Fonctions holomorphes dans léspace. Mathematica Mathematica 5, 142–159 (1931)zbMATHGoogle Scholar
- 20.Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. eds.: NIST handbook of mathematical functions. Cambridge University Press, Cambridge (2010)Google Scholar
- 21.Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Akad. Wiss. 69, 262–277 (1917)zbMATHGoogle Scholar
- 22.Shepp, L. A. eds.: Computed Tomography. American Mathematical Society, Providence, R.I, Proceedings of Symposia in Applied Mathematics (1983)zbMATHGoogle Scholar
- 23.Sommen, F.: Clifford analysis and integral geometry. Kluwer Acad. Publ., Proc. Second Workshop on Clifford Algebras, pp. 293–311 (1992)CrossRefGoogle Scholar
- 24.Sommen, F.: Radon and X-ray transforms in Clifford analysis. Complex Var. Theory Appl. Int. J. 11, 49–70 (1989)MathSciNetzbMATHGoogle Scholar
- 25.Sommen, F.: An extension of the radon transform to clifford analysis. Complex Var. Theory Appl. Int. J. 8, 243–266 (1987)MathSciNetzbMATHGoogle Scholar
- 26.Sommen, F.: Plane elliptic systems and monogenic functions in symmetric domains. In: Proceedings of the 12th Winter School on Abstract Analysis, pp. 259–269 (1984)Google Scholar
- 27.Sommen, F.: Spherical monogenic functions and analytic functionals on the unit sphere. Tokyo J. Math. 4, 427–456 (1981)MathSciNetCrossRefGoogle Scholar
- 28.Vekua, I.N.: Generalized Analytic Functions. Elsevier, Amsterdam (2014)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019