Szegö–Radon Transform for Biaxially Monogenic Functions

  • Ren HuEmail author
  • Tim Raeymaekers
  • Franciscus Sommen
Part of the following topical collections:
  1. T.C. FTHD 2018


In this paper we introduce the Szegö–Radon transform for biaxially monogenic functions, which are calculated explicitly for the two types of biaxially monogenic functions. To simplify these results, we make use of the Funk–Hecke theorem to obtain Vekua systems in two real variables. Using the biaxial decomposition of inner spherical monogenics in biaxially symmetric domain, we obtain the biaxial decomposition of Szegö–Radon transform.


Clifford analysis Szegö–Radon transform Biaxially monogenic functions Vekua system 

Mathematics Subject Classification

Primary 44A12 Secondary 30G35 



The first author is supported by China Scholarship Council (CSC).


  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge, Encyclopedia of mathematics and its applications (2006) Google Scholar
  2. 2.
    Bateman, H. (ed.): Higher Transcendental Functions, vol. 1. Krieger, Malabar, Fla, Bateman Manuscript Project (1981)Google Scholar
  3. 3.
    Brackx, F., Delanghe , R., Sommen, F.: Clifford Analysis. Pitman Advanced Pub. Program, Boston, Research notes in mathematics (1982)Google Scholar
  4. 4.
    Bures, J., Lavicka, R., Soucek, V.: Elements of Quaternionic Analysis and Radon Transform. Departamento de Matemática da Universidade de Coimbra, Textos de Matematica (2009)Google Scholar
  5. 5.
    Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Colombo, F., Lávička, R., Sabadini, I., Souček, V.: The Radon transform between monogenic and generalized slice monogenic functions. Math. Ann. 3, 733–752 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Colombo, F., Sabadini, I., Sommen, F.: On the Szegö–Radon projection of monogenic functions. Adv. Appl. Math. 74, 1–22 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Common, A.K., Sommen, F.: Axial monogenic functions from holomorphic functions. J. Math. Anal. Appl. 179, 610–629 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. Springer, Dordrecht (1992)CrossRefGoogle Scholar
  10. 10.
    Delanghe, R.: Clifford analysis: history and perspective. Comput. Methods Funct. Theory 1, 107–153 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Delanghe , R., Sommen, F.: Spingroups and Spherical Monogenics. Clifford Algebras and Their Applications in Mathematical Physics, 115–132. Springer, Dordrecht (1986)CrossRefGoogle Scholar
  12. 12.
    Fueter, R.: Die Funktionentheorie der Differentialgleichungen \(\Delta =0\) und \(\Delta \Delta u=0\) mit vier reellen Variablen. Commentarii Mathematici Helvetici 7, 307–330 (1934)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gilbert, J., Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  14. 14.
    Gel’fand, I.M., Shilov, G.E.: Generalized functions. AMS Chelsea Publishing, American Mathematical Society, Providence (2016)Google Scholar
  15. 15.
    Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2011)CrossRefGoogle Scholar
  16. 16.
    Helgason, S.: The Radon Transform. Birkhäuser, Basel (1999)CrossRefGoogle Scholar
  17. 17.
    Hochstadt, H.: The Functions of Mathematical Physics. Wiley-Interscience, New York (1971)zbMATHGoogle Scholar
  18. 18.
    Jank, G., Sommen, F.: Clifford analysis, biaxial symmetry and pseudoanalytic functions. Complex Var. Theory Appl. Int. J. 13, 195–212 (1990)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Moisil, G.C., Théodoresco, N.: Fonctions holomorphes dans léspace. Mathematica Mathematica 5, 142–159 (1931)zbMATHGoogle Scholar
  20. 20.
    Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. eds.: NIST handbook of mathematical functions. Cambridge University Press, Cambridge (2010)Google Scholar
  21. 21.
    Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Akad. Wiss. 69, 262–277 (1917)zbMATHGoogle Scholar
  22. 22.
    Shepp, L. A. eds.: Computed Tomography. American Mathematical Society, Providence, R.I, Proceedings of Symposia in Applied Mathematics (1983)zbMATHGoogle Scholar
  23. 23.
    Sommen, F.: Clifford analysis and integral geometry. Kluwer Acad. Publ., Proc. Second Workshop on Clifford Algebras, pp. 293–311 (1992)CrossRefGoogle Scholar
  24. 24.
    Sommen, F.: Radon and X-ray transforms in Clifford analysis. Complex Var. Theory Appl. Int. J. 11, 49–70 (1989)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Sommen, F.: An extension of the radon transform to clifford analysis. Complex Var. Theory Appl. Int. J. 8, 243–266 (1987)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Sommen, F.: Plane elliptic systems and monogenic functions in symmetric domains. In: Proceedings of the 12th Winter School on Abstract Analysis, pp. 259–269 (1984)Google Scholar
  27. 27.
    Sommen, F.: Spherical monogenic functions and analytic functionals on the unit sphere. Tokyo J. Math. 4, 427–456 (1981)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Vekua, I.N.: Generalized Analytic Functions. Elsevier, Amsterdam (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Clifford Research Group, Department of Mathematical Analysis, Faculty of Engineering and ArchitectureGhent UniversityGhentBelgium

Personalised recommendations