Cohomology and 1-Parameter Formal Deformations of Hom-\(\delta \)-Lie Triple Systems

  • Liangyun ChenEmail author
  • Yang Yi
  • Ming Chen
  • Yuling Tang


In this paper, we study the cohomology theory of Hom-\(\delta \)-Lie triple systems. We develop the 1-parameter formal deformation theory of Hom-\(\delta \)-Lie triple systems, and prove that it is governed by the cohomology group.


Hom-\(\delta \)-Lie triple systems Cohomology Deformation 

Mathematics Subject Classification

17A40 17B10 17B56 55U15 



The authors would like to thank the referee for valuable comments and suggestions on this article.


  1. 1.
    Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras. J. Lie Theory 21(4), 813–836 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ammar, F., Mabrouk, S., Makhlouf, A.: Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras. J. Geom. Phys. 61(10), 1898–1913 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76, 38–60 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Elhamdadi, M., Makhlouf, A.: Deformations of Hom-alternative and Hom-Malcev algebras. Algebras Groups Geom. 28(2), 117–145 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79(2), 59–103 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gerstenhaber, M.: On the deformation of rings and algebras. II. Ann. Math. 84, 1–19 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gerstenhaber, M.: On the deformation of rings and algebras. III. Ann. Math. 88(2), 1–34 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gerstenhaber, M.: On the deformation of rings and algebras. IV. Ann. Math. 99(2), 257–276 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hartwig, J., Larsson, D., Silvestrov, S.: Deformations of Lie algebras using \(\sigma \)-derivations. J. Algebra 295(2), 314–361 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hochschild, G.: On the cohomology groups of an associative algebra. Ann. Math. 46(2), 58–67 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hu, N.: \(q\)-Witt algebras, \(q\)-Lie algebras, \(q\)-holomorph structure and representations. Algebra Colloq. 6(1), 51–70 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kubo, F., Taniguchi, Y.: A controlling cohomology of the deformation theory of Lie triple systems. J. Algebra 278(1), 242–250 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, Y., Chen, L., Ma, Y.: Hom-Nijienhuis operators and \(T\)*-extensions of hom-Lie superalgebras. Linear Algebra Appl. 439(7), 2131–2144 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ma, Y., Chen, Y., Lin, J.: Central extensions and deformations of Hom-Lie triple systems. Comm. Algebra 46(3), 1212–1230 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Makhlouf, A., Silvestrov, S.: Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22(4), 715–739 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Okubo, S., Kamiya, N.: Jordan-Lie superalgebra and Jordan-Lie triple system. J. Algebra. 198, 388–411 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sheng, Y.: Representations of hom-Lie algebras. Algebr. Represent. Theory 15(6), 1081–1098 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vandermolen, R.: Universal imbedding of a Hom-Lie triple system. arXiv:1709.08714 (2017)
  19. 19.
    Yamaguti, K.: On the cohomology space of Lie triple system. Kumamoto J. Sci. Ser. A 5, 44–52 (1960)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Yau, D.: Hom-algebras and homology. J. Lie Theory 19(2), 409–421 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Yau, D.: On n-ary Hom-Nambu and Hom-Nambu-Lie algebras. J. Geom. Phys. 62(2), 506–522 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liangyun Chen
    • 1
    Email author
  • Yang Yi
    • 1
  • Ming Chen
    • 1
  • Yuling Tang
    • 1
  1. 1.School of Mathematics and StatisticsNortheast Normal UniversityChangchunChina

Personalised recommendations