L1-Norm Minimization for Multi-dimensional Signals Based on Geometric Algebra

  • Rui Wang
  • Miaomiao Shen
  • Tao Wang
  • Wenming CaoEmail author


We address the \(\ell _1 \)-norm minimization problem, which plays an important role in the compressed sensing (CS) theory. While most previous approaches are designed for signals of low dimensions, we present in this paper an algorithm using geometric algebra (GA) for solving the problem of \(\ell _1 \)-norm minimization for multi-dimensional signals with and without noise contamination by converting it to second-order cone programming. The algorithm represents the multi-dimensional signal as a multivector in the GA form to process it in a holistic way without losing the correlation among different dimensions of the multi-dimensional signal. Numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm and its robustness to noise. The proposed algorithm can also be used to guide perfect recovery of multi-dimensional signals, and may find potential applications when CS theory meets the multi-dimensional signal processing.


Geometric algebra Compressed sensing Multi-dimensional signal processing SOCP 



This work was supported by National Natural Science Foundation of China (NSFC) under Grant nos. 61771299, 61771322, 61375015, 61301027.


  1. 1.
    Bayro Corrochano, E., Zang, Y.: The motor extended Kalman filter a geometric approach for rigid motion estimation. J. Math. Imaging Vis. 13, 205–228 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bayro, Corrochano E.: Theory and use of the quaternion wavelet transform. J. Math. Imaging Vis. 24, 19–35 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11(4), 469 (2005)CrossRefGoogle Scholar
  7. 7.
    Ell, T., Sangwine, S.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16, 22–35 (2007)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ender, J.H.G.: On compressive sensing applied to radar. Signal Process. 90(5), 1402–1414 (2010)CrossRefGoogle Scholar
  9. 9.
    Franchini, S., Gentile, A., Sorbello, F., Vassallo, G., Vitabile, S.: ConformalALU: a conformal geometric algebra coprocessor for medical image processing. IEEE Trans. Comput. 64(4), 955–970 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gunn, C.: A new approach to euclidean plane geometry based on projective geometric algebra. Mathematics 704(4), 41–58 (2015)Google Scholar
  11. 11.
    Gunn, C.G.: A new approach to euclidean plane geometry based on projective geometric algebra. Mathematics 704(4), 41–58 (2015)Google Scholar
  12. 12.
    Hamilton, W.R.: On quaternions. In: Proc. Roy. Irish Acad., pp. 1–16 (1844)Google Scholar
  13. 13.
    Hitzer, E., Nitta, T., Kuroe, Y.: Applications of Clifford’s geometric algebra. Adv. Appl. Clifford Algebras 23(2), 377–404 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Javidi, S., Took, C.C., Mandic, D.P.: A fast independent component analysis algorithm for quaternion signals. IEEE Trans. Neural Netw. 22(12), 1967–1978 (2010)CrossRefGoogle Scholar
  15. 15.
    Jiang, T., Wei, M.: Equality constrained least squares problem over quaternion field. Appl. Math. Lett. 16, 883–888 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, Y., Liu, W., Li, X.: GA-SIFT: a new scale invariant feature transform for multispectral image using geometric algebra. Inf. Sci. 281, 559–572 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lopes, W.B., Al-Nuaimi, A., Lopes, C.G.: Geometric-algebra LMS adaptive filter and its application to rotation estimation. IEEE Signal Process. Lett. 23(6), 858–862 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Lopez Gonzalez, G., Altamirano Gomez, G., Bayro Corrochano, E.: Geometric entities voting schemes in the conformal geometric algebra framework. Adv. Appl. Clifford Algebra 26(3), 1045–1059 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pham, M.T., Yoshikawa, T., Furuhashi, T., Tachibana, K.: Robust feature extractions from geometric data using geometric algebra. In: IEEE International Conference on Systems Man and Cybernetics, pp. 529–533 (2009)Google Scholar
  20. 20.
    Shen, M.M., Wang, R., Cao, W.M.: Joint sparse representation model for multi-channel image based on reduced geometric algebra. IEEE Access Image Process. 6, 24213–24223 (2018)CrossRefGoogle Scholar
  21. 21.
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1998)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Su, H., Bo, Z.: Conformal geometric algebra based band selection and classification for hyperspectral imagery. In: 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA., pp. 1–4 (2016)Google Scholar
  23. 23.
    Vía, J., Ramírez, D., Vielva, L.: Properness and widely linear processing of quaternion random vectors. IEEE Trans. Inf. Theory 56(7), 3502–3515 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vía, J., Palomar, D.P., Vielva, L., Santamaría, I.: Quaternion ICA from second-order statistics. IEEE Trans. Signal Process. 59(4), 1586–1600 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Vía, J., Palomar, D.P., Vielva, L.: Generalized likelihood ratios for testing the properness of quaternion Gaussian vectors. IEEE Trans. Signal Process. 59, 1356–1370 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, R., Xiang, G.J., Zhang, F.: L1-norm minimization for octonion signals. In: International Conference on Audio, Language and Image Processing. IEEE, pp. 552–556 (2017)Google Scholar
  27. 27.
    Wang, R., Zhou, Y.X., Jin, Y.L.: Sparse fast Clifford Fourier transform. Front. Inf. Technol. Electron. Eng. 18(8), 1131–1141 (2017)CrossRefGoogle Scholar
  28. 28.
    Wareham, R., Cameron, J., Lasenby, J.: Applications of conformal geometric algebra in computer vision and graphics. In: International Conference on Computer Algebra & Geometric Algebra with Applications. Springer, pp. 329–349 (2004)Google Scholar
  29. 29.
    Winter, S., Kellermann, W., Sawada, H., Makino, S.: MAP-based underdetermined blind source separation of convolutive mixtures by hierarchical clustering and L1-norm minimization. EURASIP J. Adv. Signal Process. 2007, 1–12 (2007)zbMATHGoogle Scholar
  30. 30.
    Xu, Z., Song, W.J., Y, Y.G., et al.: L1-norm minimization for quaternion signals. J. Southeast Univ. 29(1), 33–37 (2013)MathSciNetGoogle Scholar
  31. 31.
    Yu, S., Khwaja, A.S., Ma, J.: Compressed sensing of complex-valued data. Signal Process. 92, 357–362 (2012)CrossRefGoogle Scholar
  32. 32.
    Zhou, S.L., Valchev, D.G., Dinovitser, A. et al.: Dispersion-independent terahertz classification based on Geometric Algebra for substance detection. In: 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, pp. 1–2 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rui Wang
    • 1
  • Miaomiao Shen
    • 1
  • Tao Wang
    • 1
  • Wenming Cao
    • 2
    Email author
  1. 1.School of Communication and Information Engineering, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data ScienceShanghai UniversityShanghaiChina
  2. 2.College of Information EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations