Drinfeld Codoubles of Hom–Hopf Algebras

  • Xiaohui Zhang
  • Shuangjian Guo
  • Shengxiang WangEmail author


The main purpose of the present paper is to develop the theory of center constructions on Hom–Hopf algebras. Let H be a Hom–Hopf algebra, we first introduce the notions of nth Yetter–Drinfeld modules and mth Drinfeld codouble for H. Also we prove that the category \({\mathcal {YD}}_H^H(n)\) of nth Yetter–Drinfeld modules of H is a braided autonomous category. Finally, we show that \({\mathcal {YD}}_H^H(n)\) and \(Corep^{i,j}(CD_m(H))\) (i.e., the corepresentation category of the Drinfeld codouble of H) are braided isomorphic as the full subcategories of \(Corep^{i,j}(H)\).


Hom–Hopf algebra Yetter–Drinfeld module Category center Drinfeld codouble 

Mathematics Subject Classification

16T15 16W30 



The work of X. H. Zhang is supported by the NSF of China (Nos. 11801304, 11801306) and the Project Funded by China Postdoctoral Science Foundation (No. 2018M630768). The work of S. J. Guo is supported by the NSF of China (No. 11761017). The work of S. X.Wang is supported by the outstanding topnotch talent cultivation project of Anhui Province (No. gxfx2017123) and the Anhui Provincial Natural Science Foundation (1808085MA14).


  1. 1.
    Bruguières, A., Virelizier, A.: Quantum double of Hopf monads and categorical centers. Trans. Am. Math. Soc. 364(3), 1225–1279 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Caenepeel, S., Wang, D., Yin, Y.: Yetter-Drinfeld modules over weak bialgebras. Ann. Univ. Ferrara-Sez. VII-Sc. Mat. LI, 69–98 (2005)Google Scholar
  3. 3.
    Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras. Comm. Algebra 39, 2216–2240 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, Y., Zhang, L.: The category of Yetter–Drinfel’d Hom-modules and the quantum Hom–Yang–Baxter equation. J. Math. Phys. 55(3), 031702 (2014)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Daowei, L., Zhang, X.: Hom-L-R-smash biproduct and the category of Hom–Yetter–Drinfel’d–Long bimodules. J. Algebra Appl. 17(7), 1850133 (2018). 19 pagesMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dekkar, K., Makhlouf, A.: Gerstenhaber–Schack cohomology for Hom-bialgebras and deformations. Comm. Alg. 45, 4400–4428 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guo, S., Zhang, X., Wang, S.: The construction and deformation of BiHom-Novikov algebras. J. Geom. Phys. 132, 460–472 (2018)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Guo, S., Zhang, X.: Separable functors for the category of Doi Hom–Hopf modules. Colloq. Math. 143, 23–37 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Guo, S., Zhang, X., Wang, S.: Braided monoidal categories and Doi–Hopf modules for monoidal Hom–Hopf algebras. Colloq. Math. 143, 79–103 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hartwig, J., Larsson, D., Silvestrov, S.: Deformation of Lie algebras using \(\sigma \)-derivations. J. Algebra 295, 314–361 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hausser, F., Nill, F.: Doubles of quasi-quantum groups. Comm. Math. Phys. 19(3), 547–589 (1999)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Joyal, A., Street, R.: Tortile Yang–Baxter operators in tensor cateogries. J. Pure Appl. Algebra 71, 43–51 (1991)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kassel, C.: Quantum Groups. Springer, New York (1995)CrossRefGoogle Scholar
  14. 14.
    Laurent-Gengoux, C., Makhlouf, A., Teles, J.: Universal algebra of a Hom–Lie algebra and group-like elements. J. Pure Appl. Algebra 222, 1139–1163 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lu, D., Wang, S.: The Drinfel’d double versus the Heisenberg double for Hom-Hopf algebras. J. Algebra Appl. 15(4), 1650059 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ma, T., Zheng, H.: Some results on Rota–Baxter monoidal Hom-Algebras. Results Math. 72, 145–170 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Majid, S.: Representations, duals and quantum doubles of monoidal categories. Rend. Circ. Mat. Palermo Suppl. 26(2), 197–206 (1991)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Majid, S.: Quantum double for quasi-Hopf algebras. Lett. Math. Phys. 45, 1–9 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Makhlouf, A., Silvestrov, S.: Hom–Lie admissible Hom-coalgebras and Hom–Hopf algebras. Generalized Lie theory in Mathematics, Physics and Beyond. Springer, Berlin, Chp 17, pp. 189–206 (2008)Google Scholar
  20. 20.
    Makhlouf, A., Panaite, F.: Yetter–Drinfeld modules for Hom-bialgebras. J. Math. Phys. 55, 013501 (2014)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Makhlouf, A., Panaite, F.: Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom–Hopf algebra. J. Algebra 441(1), 314–343 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Makhlouf, A., Silvestrov, S.: Hom-algebras structures. J. Gen. Lie Theory Appl. 2, 51–64 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras. J. Algebra Appl. 09, 553–589 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Makhlouf, A., Silvestrov, S.: Notes on formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22(4), 715–759 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Montgomery, S.: Hopf algebras and their actions on rings. CMBS Reg. Conf. Ser. In Math. 82, Am. Math. Soc., Providence (1993)Google Scholar
  26. 26.
    Naihong, H.: \(q\)-Witt algebras, \(q\)-Lie algebras, \(q\)-holomorph structure and representations. Algebra Colloq. 6(1), 51–70 (1999)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Nenciu, A.: The center constructions for weak Hopf algebras. Tsukaba J. Math. 26(1), 189–204 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, S., Guo, S.: Symmetries and the u-condition in Hom–Yetter–Drinfeld categories. J. Math. Phys. 55(8), 081708 (2014)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Yau, D.: Hom–Yang–Baxter equation, Hom–Lie algebras and quasitriangular bialgebras. J. Phys. A 42(16), 165202 (2009)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Yau, D.: Hom-quantum groups I: Quasitriangular Hom-bialgebras. J. Phys. A 45(6), 065203 (2012)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang, X., Dong, L.: Braided mixed datums and their applications on Hom-quantum groups. Glasgow Math. J. 60, 231–251 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhang, X., Wang, S.: Weak Hom–Hopf algebras and their (co)representations. J. Geom. Phys. 94, 50–71 (2015)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhao, X., Zhang, X.: Lazy 2-cocycles over monoidal Hom–Hopf algebras. Colloq. Math. 142, 61–81 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesQufu Normal UniversityQufuPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsGuizhou University of Finance and EconomicsGuiyangPeople’s Republic of China
  3. 3.School of Mathematics SciencesChuzhou UniversityChuzhouPeople’s Republic of China

Personalised recommendations