Advertisement

Quaternion-Valued Smooth Compactly Supported Orthogonal Wavelets with Symmetry

  • Guangsheng Ma
  • Lizhong Peng
  • Jiman ZhaoEmail author
Article
  • 21 Downloads

Abstract

We construct two novel quaternion-valued smooth compactly supported symmetric orthogonal wavelet (QSCSW) filters of length greater than existing ones. In order to obtain their filter coefficients, we propose an optimization-based method for solving a specific kind of multivariate quadratic equations. This method provides a new idea for solving multivariate quadratic equations and could be applied to construct much longer QSCSW filters.

Keywords

Quaternion multiresolution analysis Quaternion wavelet filter Multivariate quadratic equations 

Mathematics Subject Classification

65T60 65Y99 

Notes

Acknowledgements

The authors would like to thank Professor Fritz Keinert for his detailed reply about a Matlab toolbox written by him. We also thank Professor Baobin Li for his useful suggestions. Thank the reviewers for giving us constructive and valuable suggestions.

References

  1. 1.
    Akansu, A.N., Haddad, R.A.: Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets, vol. 60, pp. 682–687. Academic Press, Cambridge (2001)zbMATHGoogle Scholar
  2. 2.
    Bayrocorrochano, E.: Multiresolution image analysis using the quaternion wavelet transform. Numer. Algorithms 39(1–3), 35–55 (2005)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Benedetto, J.J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmonic Anal. 5(4), 389–427 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, vol. 76 of Research Notes in Mathematics. Pitman Advanced Publishing Program, Boston (1982)zbMATHGoogle Scholar
  5. 5.
    Brackx, F., Knock, B.D., Schepper, H.D.: A matrix Hilbert transform in hermitean clifford analysis. J. Math. Anal. Appl. 344(2), 1068–1078 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Buchberger, B.: Gr\(\ddot{o}\)bner bases: a short introduction for systems theorists. Comput. Aided Syst. Theory 2178, 1–19 (2001)Google Scholar
  7. 7.
    Burt, P.J.: Multiresolution Techniques for Image Representation, Analysis, and ‘Smart’ Transmission. In: Proceedings of the SPIE on Visual Communication and Image Processing IV, vol. 1199, pp. 2–15 (1989)Google Scholar
  8. 8.
    Crowley, J.L.: A Representations for Visual Information. Ph.D. thesis, Carnegie-Mellon University (1982)Google Scholar
  9. 9.
    Daubechies, I.: Ten lectures on wavelets. Society for Industrial and Applied Mathematics (1992)Google Scholar
  10. 10.
    Ginzberg, P., Walden, A.T.: Matrix-valued and quaternion wavelets. IEEE Trans. Signal Process. 61(6), 1357–1367 (2013)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    He, J.X., Yu, B.: Wavelet analysis of quaternion-valued time-series. Int. J. Wavelets Multiresolut. Inf. Process. 3, 233–246 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hitzer, E.M.S., Sangwine, S.J.: Quaternion and Clifford Fourier transforms and wavelets. Trends in Mathematics (2013)Google Scholar
  13. 13.
    Keinert, F.: Wavelets and multiwavelets. Chapman & Hall Press, Boca Raton (2003)CrossRefGoogle Scholar
  14. 14.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of \(L^2({\mathbb{R}})\). Trans. Am. Math. Soc. 315(1), 69–87 (1989)zbMATHGoogle Scholar
  16. 16.
    Mallat, S.: A Wavelet Tour of Signal Processing, vol. 31, pp. 83–85. Academic Press, Cambridge (1999)zbMATHGoogle Scholar
  17. 17.
    Mawardi, B., Ryuichi, A., Remi, V.: Two-dimensional Quaternion Fourier transform of type II and quaternion wavelet transform. In: International Conference on Wavelet Analysis and Pattern Recognition, pp. 15–17 (2012)Google Scholar
  18. 18.
    Meyer, Y.: Wavelets and applications. Acoust. Soc. Am. J. 92(5), 3023 (1992)ADSGoogle Scholar
  19. 19.
    Mitrea, M.: Clifford Wavelets, Singular Integrals, and Hardy Spaces. Springer, Berlin (1994)CrossRefGoogle Scholar
  20. 20.
    Moxey, C.E., Sangwine, S.J., Ell, T.A.: Hypercomplex correlation techniques for vector images. IEEE Trans. Signal Process. 51(7), 1941–1953 (2003)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  22. 22.
    Pang, H., Zhu, M., Guo, L.: Multifocus color image fusion using quaternion wavelet transform. In: IEEE International Congress on Image and Signal Processing, pp. 543–546 (2012)Google Scholar
  23. 23.
    Peng, L., Zhao, J.: Quaternion-valued smooth orthogonal wavelets with short support and symmetry. Trends in mathematics: advances in analysis and geometry. Birkh\(\ddot{a}\)user, Basel, pp. 365–376 (2004)CrossRefGoogle Scholar
  24. 24.
    Sabadini, I., Sommen, F.: Hermitian Clifford Analysis. Springer, Basel (2015)CrossRefGoogle Scholar
  25. 25.
    Sangwine, S.J., Ell, T.A.: The discrete fourier transform of a color image. In: Algorithms and Applications, Image Processing II Mathematical Methods, pp. 430–441 (2000)Google Scholar
  26. 26.
    Traversoni, L.: Quaternion Wavelet Problems. In: Proceedings of 8th International Symposium on Approximation Theory. Texas A&M University (1995)Google Scholar
  27. 27.
    Zhao, J., Peng, L.: Quaternion-valued admissible wavelets associated with the 2D Euclidean group with dilations. J. Nat. Geom. 20(1/2), 21–32 (2001)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Zhou, J., Xu, Y., Yang, X.: Quaternion wavelet phase based stereo matching for uncalibrated images. Pattern Recognit. Lett. 28(12), 1509–1522 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Key Laboratory of Mathmatics and Complex Systems, Ministry of EducationBeijing Normal UniversityBeijingChina
  2. 2.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations