Characteristic Polynomials in Clifford Algebras and in More General Algebras

  • Jacques HelmstetterEmail author
Part of the following topical collections:
  1. Homage to Prof. W.A. Rodrigues Jr


This article combines two independent theories: firstly, the algorithm of Faddeev–Leverrier which calculates characteristic polynomials of matrices; secondly, the Descent Theory which, in particular, lets many properties of matrix algebras descend down to Azumaya algebras, especially the characteristic polynomials. The algorithm of Faddeev–Leverrier is completely revisited. The details of the descent are explained as far as they are needed for Clifford algebras over fields.


Matrices Algorithm of Faddeev–Leverrier Central simple algebras Azumaya algebras 

Mathematics Subject Classification

15A15 16S50 15A66 



  1. 1.
    Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Berlin (1993)CrossRefGoogle Scholar
  2. 2.
    Gantmacher, F.R.: Théorie des matrices, Tome 1. Dunod, Paris (1966)zbMATHGoogle Scholar
  3. 3.
    Helmstetter, J., Micali, A.: Quadratic Mappings and Clifford Algebras. Birk-häuser, Basel (2008)zbMATHGoogle Scholar
  4. 4.
    Knus, M.A.: Quadratic and Hermitian Forms Over Rings, Grundlehren der Math. Wissenschaft, vol. 294. Springer, Berlin (1991)Google Scholar
  5. 5.
    Knus, M.A., Ojanguren, M.: Théorie de la Descente et Algèbres d’Azumaya. Lecture Notes in Math, vol. 389. Springer, Berlin (1974)CrossRefGoogle Scholar
  6. 6.
    Parisse, B.: Algorithmes de calcul formel et numérique. Institut Fourier, Université de Grenoble (2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut Fourier, Université de Grenoble ISaint-Martin d’HèresFrance

Personalised recommendations