Advertisement

Monte Carlo Geometry Modeling for Particle Transport Using Conformal Geometric Algebra

  • E. Ulises Moya-SánchezEmail author
  • A. Moisés Maciel-Hernández
  • Adrian S. Niebla
  • José Ramos-Méndez
  • Oscar Carbajal-Espinosa
Article
Part of the following topical collections:
  1. Proceedings ICCA 11, Ghent, 2017

Abstract

The Monte Carlo (MC) simulations are considered the gold-standard method for calculating the transport and interaction of radiation with the matter. A fundamental component of any MC simulation is the geometrical modeling. Current implementations of the geometrical modeling are based only on the Euclidean representations. However, Euclidean representations may not be the best option for speed up the geometric debugging-modeling computations of radiation transport, due to the number of operations involved in the estimation of position and direction of particles within each geometry shape. In this work, it is proposed for the first time, the use of Conformal Geometric Algebra (CGA), for geometric modeling in MC simulation for radiation transport. In this context, we present some elemental CGA equations for the microscopic modeling of positions and rotations of a radiation particle and the macroscopic modeling of geometrical shapes. It is shown that it is possible to take advantage of the expression power of CGA to create and debug geometry modeling with a triboelectric X-ray application. Additionally, some advantages of the CGA for the microscopic geometric computations are explored.

Keywords

Monte Carlo geometry Ray tracing Conformal Geometry Algebra 

Notes

Acknowledgements

This research has been supported by the CONACYT SNI Grant.

References

  1. 1.
    Almansa, J., Salvat-Pujol, F., Díaz-Londoño, G., Carnicer, A., Lallena, A.M., Salvat, F.: Pengeoma general-purpose geometry package for Monte Carlo simulation of radiation transport in material systems defined by quadric surfaces. Comput. Phys. Commun. 199, 102–113 (2016)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Badal, A., Kyprianou, I.S., Banh, D.P., Badano, A., Sempau, J.: penmesh-monte carlo radiation transport simulation in a triangle mesh geometry. IEEE Trans. Med. Imaging 28(12), 1894–1901 (2009)CrossRefGoogle Scholar
  3. 3.
    Bayro-Corrochano, E.: Geometric Computing: For Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer, Berlin (2010)CrossRefGoogle Scholar
  4. 4.
    Bayro-Corrochano, E., Rivera-Rovelo, J.: The use of geometric algebra for 3d modeling and registration of medical data. J. Math. Imaging Vis. 34(1), 48–60 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bielajew, A.F.: Fundamentals of the monte carlo method for neutral and charged particle transport. The University of Michigan (2001)Google Scholar
  6. 6.
    Bushberg, J.T., Boone, J.M.: The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia (2011)Google Scholar
  7. 7.
    Colapinto, P.: Spatial computing with conformal geometric algebra. PhD thesis, University of California Santa Barbara (2011)Google Scholar
  8. 8.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, vol. 290. Springer, Berlin (2013)Google Scholar
  9. 9.
    Deul, C., Burger, M., Hildenbrand, D., Koch, A.: Raytracing point clouds using geometric algebra. In: Submitted to the Proceedings of the GraVisMa workshop, Plzen (2010)Google Scholar
  10. 10.
    Doran, C., Lasenby, A., Lasenby, J.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  11. 11.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc, Burlington (2009)Google Scholar
  12. 12.
    Fontijne, D., Dorst, L.: Modeling 3d euclidean geometry. IEEE Comput. Graph. Appl. 23(2), 68–78 (2003)CrossRefGoogle Scholar
  13. 13.
    Franchini, S., Gentile, A., Sorbello, F., Vassallo, G., Vitabile, S.: Conformalalu: a conformal geometric algebra coprocessor for medical image processing. IEEE Trans. Comput. 64(4), 955–970 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hestenes, D., Sobczyk, G.: Clifford algebra to geometric calculus: a unified language for mathematics and physics, vol. 5. Springer (2012)Google Scholar
  15. 15.
    Hildenbrand, D.: Using gaalop for high-performance geometric algebra computing. In: Foundations of Geometric Algebra Computing, pp. 141–154, Springer, Berlin (2013)Google Scholar
  16. 16.
    Hildenbrand, D., Franchini, S., Gentile, A., Vassallo, G., Vitabile, S.: Gappco: an easy to configure geometric algebra coprocessor based on gapp programs. Adv. Appl. Clifford Algebras 27(3), 2115–2132 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hird, J.R., Camara, C.G., Putterman, S.J.: A triboelectric X-ray source. Appl. Phys. Lett. 98(13), 891–921 (2011). (no. 133501)CrossRefGoogle Scholar
  18. 18.
    Lange, H., Stock, F., Koch, A., Hildenbrand, D.: Acceleration and energy efficiency of a geometric algebra computation using reconfigurable computers and gpus. In: 17th IEEE Symposium on Field Programmable Custom Computing Machines, 2009. FCCM’09. pp. 255–258, IEEE (2009)Google Scholar
  19. 19.
    Lavor, C., Xambó-Descamps, S., Zaplana, I.: A Geometric Algebra Invitation to Space–Time Physics, Robotics and Molecular Geometry. SBMA/Springerbrief. Springer, Berlin (2018)CrossRefGoogle Scholar
  20. 20.
    Lee, C.: Monte carlo calculations in nuclear medicine second edition: applications in diagnostic imaging (2014)Google Scholar
  21. 21.
    Nelson, W., Jenkins, T.: Writing subroutine howfar for egs4, tech. rep., SLAC TN-87-4 (1987)Google Scholar
  22. 22.
    Perl, J., Shin, J., Schümann, J., Faddegon, B., Paganetti, H.: Topas: an innovative proton monte carlo platform for research and clinical applications. Med. Phys. 39(11), 6818–6837 (2012)CrossRefGoogle Scholar
  23. 23.
    Perwass, C., Edelsbrunner, H., Kobbelt, L., Polthier, K.: Geometric Algebra with Applications in Engineering, vol. 20. Springer, Berlin (2009)Google Scholar
  24. 24.
    Pia, M.G., Weidenspointner, G.: Monte carlo simulation for particle detectors. arXiv preprint arXiv:1208.0047 (2012)
  25. 25.
    Popescu, L.M.: A geometry modeling system for ray tracing or particle transport monte carlo simulation. Comput. Phys. Commun. 150(1), 21–30 (2003)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Seltzer, S.M.: X-ray mass attenuation coefficients. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. Accessed 04 Aug 2017
  27. 27.
    Sveier, A., Kleppe, A.L., Tingelstad, L., Egeland, O.: Object detection in point clouds using conformal geometric algebra. Adv. Appl. Clifford Algebras, 1–16 (2017)Google Scholar
  28. 28.
    Tseung, H Wan Chan, Ma, J., Beltran, C.: A fast gpu-based monte carlo simulation of proton transport with detailed modeling of nonelastic interactions. Med. Phys. 42(6), 2967–2978 (2015)CrossRefGoogle Scholar
  29. 29.
    Weller, R., Zachmann, G.: A unified approach for physically-based simulations and haptic rendering. In: Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games, pp. 151–159, ACM (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Autónoma de Guadalajara and Barcelona Supercomputing CenterZapopanMexico
  2. 2.Nexus IIBarcelonaSpain
  3. 3.Universidad Autónoma de GuadalajaraZapopanMexico
  4. 4.University of California San FranciscoSan FranciscoUSA
  5. 5.ITESM Campus GuadalajaraZapopanMexico

Personalised recommendations