Product of Three Octonions

  • Mikhail KharinovEmail author


This paper considers octonions that are the eight-dimensional hypercomplex numbers characterized by multiplicative non-associativity. The decomposition of the product of three octonions with conjugate central factor into the sum of mutually orthogonal triple anticommutator, triple commutator and associator, is introduced in an obvious way by commuting the factors and alternating the multiplication order. The commutator is regarded as a generalization of the cross product to the case of three arguments both for quaternions and for octonions. It is shown that the decomposition found coincides with the decomposition of the triple octonion product into symmetric-antisymmetric or, in other words, symmetric-skew-symmetric parts. It is verified that the resulting additive decomposition is equivalent to the known solution derived and presented by Okubo in insufficiently perfect form. Based on the results of Okubo, a slight correction of modern definitions of the triple cross product is proposed.


Additive decomposition Quaternions Octonions Triple cross product 

Mathematics Subject Classification

Primary 11R52 Secondary 00A06 



  1. 1.
    Baez, J.: The octonions. Bull. Am. Math. Soc. 39(2), 145–205 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barykin, V.N.: Nonassociativity on the Combinatorial Operation, p. 236. Kovcheg Publishing House, Minsk (2011) (Russian) Google Scholar
  3. 3.
    Blum, V.S., Zabolotsky, V.P.: Immune system and immunocomputing. Math. Morphol. 6(4), 16 (2007) (Russian) Google Scholar
  4. 4.
    Casanova, G.: L’algbre vectorielle, p. 127. Presses de Universitaries de France, Paris (1976)Google Scholar
  5. 5.
    Dirac, P.A.M.: Application of quaternions to Lorentz transformations. Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 50, 261–270 (1944/1945)Google Scholar
  6. 6.
    Dray, T., Manogue, C.A.: The octonionic eigenvalue problem. Adv. Appl. Clifford Algebra 8(2), 341–364 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dray, T., Manogue, C.A.: The Geometry of the Octonions, p. 228. World Scientific, Singapore (2015)CrossRefGoogle Scholar
  8. 8.
    Flaut, C.: Some remarks concerning Quaternions and Octonions. arXiv:1711.10434 (2017)
  9. 9.
    Furman, Ya.A.: Processing of quaternion signals specifying spatially located group point objects. Pattern Recognit. Image Anal. (Adv. Math. Theory Appl.) 12(2), 175–193 (2002)Google Scholar
  10. 10.
    Furman, Ya.A., Krevetsky, A.V., Rozhentsov, A.A., Khafizov, R.G., Leukhin, A.N., Egoshina, I.L.: Complex-valued and Hypercomplex Systems in Multidimensional Signal Processing Problems. State Publishing House of Physical and Mathematical Literature, Moscow (2004) (Russian) Google Scholar
  11. 11.
    Hamilton, W.R.: Lectures on Quaternions, p. 890. Hodges and Smith, Dublin (1853)Google Scholar
  12. 12.
    Kantor, I.L., Solodovnikov, A.S.: Hypercomplex Numbers: An Elementary Introduction to Algebras, p. 166. Springer, New York (1989)CrossRefGoogle Scholar
  13. 13.
    Kerner, R.: Geometric structures on Lie algebras and the Hitchin flow. Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg vorgelegt im Fachbereich Mathematik von Marco Freibert aus Würzburg, Humburg (2013)Google Scholar
  14. 14.
    Kharinov, M.V.: Logical puzzle game “DaltoRainbow”. USSR patent 1799274 (1990) (Russian) Google Scholar
  15. 15.
    Kharinov, M.V.: Permutational and hidden symmetry on the example of isomorphic Hadamard matrices. Applications in the field of artificial intelligence. In: Proceedings of the Second International Conference on “Means of mathematical modeling”, vol. 5, pp. 247–254. SPbSTU Publishing House, St. Petersburg (1999). (Russian)Google Scholar
  16. 16.
    Kulakov, A.Yu.: Model and algorithms for reconfiguration of the control system for the living of a spacecraft, Ph.D. thesis. St. Petersburg Institute of Informatics and Automation of the RAS, St. Petersburg (2017) (Russian) Google Scholar
  17. 17.
    Lurie, A.I.: Analytical Mechanics. State Publishing House of Physical and Mathematical Literature, Moscow (1961) (Russian) Google Scholar
  18. 18.
    Madelung, E.: Die Mathematischen Hilfsmittel des Physikers, p. 247. Julius Springer, Berlin (1922)CrossRefGoogle Scholar
  19. 19.
    Okubo, S.: Triple products and Yang–Baxter equation. I. Octonionic and quaternionic triple systems. J. Math. Phys. 34(7), 3273–3291 (1993)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Salamon, D.A., Walpuski, T.: Notes on the octonions. arXiv:1005.2820 [math.RA] (2010)
  21. 21.
    Silagadze, Z.K.: Multi-dimensional vector product. J. Phys. A Math. Gen. 35(23), 4949–4953 (2002)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Tarakanov, A.O.: Mathematical models of information processing based on self-assembly results. Doctoral diss., St. Petersburg Institute of Informatics and Automation of the RAS, St. Petersburg (1999) (Russian) Google Scholar
  23. 23.
    Todorov, I., Dubois-Violette, M.: Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra. Bures-sur-Yvette preprint IHES/P/17/03 (2017)Google Scholar
  24. 24.
    Yusupov, R.M.: The History of Computer Science and Cybernetics in St. Petersburg (Leningrad), p. 152. Nauka Publishing House, St. Petersburg (2010) (Russian) Google Scholar
  25. 25.
    Zotov, Yu.K., Timofeev, A.V.: Controllability and robust stabilization of software movements of aircraft with nonlinear dynamics. In: Proc. of SPIIRAS, vol. 3, no. 2, pp. 383–405. Nauka Publishing House, St. Petersburg (2006) (Russian) Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The Federal State Institution of ScienceSt. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)St. PetersburgRussia

Personalised recommendations