Resolution of the \({\varvec{k}}\)-Dirac operator

  • Tomáš Salač


This is the second part in a series of two papers. The k-Dirac complex is a complex of differential operators which are naturally associated to a particular |2|-graded parabolic geometry. In this paper we will consider the k-Dirac complex over the homogeneous space of the parabolic geometry and as a first result, we will prove that the k-Dirac complex is formally exact (in the sense of formal power series). Then we will show that the k-Dirac complex descends from an affine subset of the homogeneous space to a complex of linear and constant coefficient differential operators and that the first operator in the descended complex is the k-Dirac operator studied in Clifford analysis. The main result of this paper is that the descended complex is locally exact and thus it forms a resolution of the k-Dirac operator.


Resolution of overdetermined system k-Dirac operator k-Dirac complex Invariant differential complexes 

Mathematics Subject Classification

Primary 35N05 58J10 Secondary 58A20 



The author is grateful to Vladimír Souček for his support and many useful conversations. The author would also like to thank to Lukáš Krump for the possibility of using his package for Young diagram. The author wishes to thank to the unknown referee for many helpful suggestions which considerably improved and simplified the current manuscript.


  1. 1.
    Adachi, M.: Embeddings and Immersions. American Mathematical Society, Providence (1993)zbMATHGoogle Scholar
  2. 2.
    Baston, R.J.: Quaternionic complexes. J. Geom. Phys. 8, 29–52 (1992)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Baston, R.J., Eastwood, M.: The Penrose transform–its interaction with representation theory. Oxford University Press, Oxford (1989). (ISBN 0-19-853565-1)zbMATHGoogle Scholar
  4. 4.
    Bureš, J., Damiano, A., Sabadini, I.: Explicit resolutions for the complex of several Fueter operators. J. Geom. Phys. 57, 765–775 (2007)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Čap, A., Salač, T.: Pushing down the Rumin complex to conformally symplectic quotients. Diff. Geom. Appl. 35(Supplement), 255–265 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Čap, A., Salač, T.: Parabolic Conformally Symplectic Structures I; Definition and Distinguished Connections. arXiv:1605.01161
  7. 7.
    Čap, A., Salač, T.: Parabolic Conformally Symplectic Structures II; Parabolic Contactification. arXiv:1605.01897
  8. 8.
    Čap, A., Salač, T.: Parabolic Conformally Symplectic Structures III; Invariant Differential Operators and Complexes. arXiv:1701.01306
  9. 9.
    Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand sequences. Ann. Math. 154(1), 97–113 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Čap, A., Slovák, J.: Parabolic Geometries I. Background and General Theory. American Mathematical Society, Providence (2009). (ISBN 978-0-8218-2681-2)zbMATHGoogle Scholar
  11. 11.
    Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra. Birkhauser, Boston (2004). ISBN 0-8176-4255-2zbMATHGoogle Scholar
  12. 12.
    Colombo, F., Souček, V., Struppa, D.C.: Invariant resolutions for several Fueter operators. J. Geom. Phys. 56(7), 1175–1191 (2006)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Franek, P.: Generalized dolbeault sequences in parabolic geometry. J. Lie Theory 18(4), 757–773 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Springer, New York (2009). ISBN 978-0-387-79581-6zbMATHGoogle Scholar
  15. 15.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables. D. Van Norstrand Company Inc, Princeton (1966)zbMATHGoogle Scholar
  16. 16.
    Krump, L.: The generalised Dolbeault complex for four Dirac operators in the stable rank. In: Proceedings of the ICNAAM, Kos 2008. AIP Conference Proceedings, pp. 670–673 (2008)Google Scholar
  17. 17.
    Morimoto, T.: Théorème de Cartan–Kähler dans une classe de fonctions formelles Gevrey. C. R. Acad. Sci. Paris Sér. I Math. 311(7), 433–436 (1990)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Morimoto, T.: Lie algebras, geometric structures and differential equations on filtered manifolds. In: Lie Groups Geometric Structures and Differential Equations—One Hundred Years After Sophus Lie. Advanced Studies in Pure Mathematics, pp. 205–252. The Mathematical Society of Japan, Tokyo (2002)Google Scholar
  19. 19.
    Nacinovich, M.: Complex analysis and complexes of differential operators. In: Complex Analysis. Lectures Notes in Mathematics, pp. 109–195. Springer, New York (1982) (ISBN 3-540-11596-X)Google Scholar
  20. 20.
    Neusser, K.: Prolongation on regular infinitesimal flag manifolds. Int. J. Math. 23(4), 1–41 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sabadini, I., Sommen, F., Struppa, D.C., van Lancker, P.: Complexes of Dirac operators in Clifford algebras. Math. Z. 239(2), 293–320 (2002)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Salač, T.: Elliptic Complex on the Grassmannian of Oriented 2-Planes in \(\mathbb{R}^{n+2}\). arXiv:1702.01282
  23. 23.
    Salač, T.: \(k\)-Dirac Complexes. arXiv:1705.09469
  24. 24.
    Salač, T.: \(k\)-Dirac operator and the Cartan–Kähler theorem for weighted differential operators. Diff. Geom. Appl. 49, 351–371 (2016)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Salač, T.: \(k\)-Dirac operator and parabolic geometry. J. Complex Anal. Oper. Theory 8(2), 383–408 (2014)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Slovák, J., Souček, V.: Invariant Operators of the First Order on Manifolds with a Given Parabolic Structure, pp. 251–276. Société Mathématique de France, Paris (2001)zbMATHGoogle Scholar
  27. 27.
    Spencer, D.C.: Overdetermined systems of linear partial differential equations. Bull. Am. Math. Soc. 75, 179–239 (1969)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Charles UniversityPragueCzech Republic

Personalised recommendations