Advertisement

Human Microbiome: Composition and Role in Inflammatory Skin Diseases

  • Anna Balato
  • Sara CacciapuotiEmail author
  • Roberta Di Caprio
  • Claudio Marasca
  • Anna Masarà
  • Annunziata Raimondo
  • Gabriella Fabbrocini
Review

Abstract

This review focuses on recent evidences about human microbiome composition and functions, exploring the potential implication of its impairment in some diffuse and invalidating inflammatory skin diseases, such as atopic dermatitis, psoriasis, hidradenitis suppurativa and acne. We analysed current scientific literature, focusing on the current evidences about gut and skin microbiome composition and the complex dialogue between microbes and the host. Finally, we examined the consequences of this dialogue for health and skin diseases. This review highlights how human microbes interact with different anatomic niches modifying the state of immune activation, skin barrier status, microbe–host and microbe–microbe interactions. It also shows as most of the factors affecting gut and skin microorganisms’ activity have demonstrated to be effective also in modulating chronic inflammatory skin diseases. More and more evidences demonstrate that human microbiome plays a key role in human health and diseases. It is to be expected that these new insights will translate into diagnostic, therapeutic and preventive measures in the context of personalized/precision medicine.

Keywords

Skin Microbiome Bacteria Inflammatory skin diseases 

References

  1. Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65Google Scholar
  2. Abdallah Ismail N, Ragab SH, Abd Elbaky A et al (2011) Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch Med Sci 7:501–507Google Scholar
  3. Agans R, Rigsbee L, Kenche H et al (2011) Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 77:404–412Google Scholar
  4. Alekseyenko AV, Perez-Perez GI, De Souza A et al (2013) Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1:31Google Scholar
  5. Al-Ghazzewi FH, Tester RF (2010) Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacterium Propionibacterium acnes in vitro. Int J Cosmet Sci 32:139–142Google Scholar
  6. Arck P, Handjiski B, Hagen E et al (2010) Is there a ‘gut-brain-skin axis’? Exp Dermatol 19:401–405Google Scholar
  7. Assarsson M, Duvetorp A, Dienus O et al (2018) Significant changes in the skin microbiome in patients with chronic plaque psoriasis after treatment with narrowband ultraviolet B. Acta Derm Venereol 98:428–436Google Scholar
  8. Bakken JS (2015) Feces transplantation for recurrent Clostridium difficile infection: US experience and recommendations. Microb Ecol Health Dis 26:27657Google Scholar
  9. Baquerizo Nole KL, Yim E, Keri JE (2014) Probiotics and prebiotics in dermatology. J Am Acad Dermatol 71:814–821Google Scholar
  10. Basak PY, Cetin ES, Gürses I et al (2013) The effects of systemic isotretinoin and antibiotic therapy on the microbial floras in patients with acne vulgaris. J Eur Acad Dermatol Venereol 27:332–336Google Scholar
  11. Bashan A, Gibson TE, Friedman J et al (2016) Universality of human microbial dynamics. Nature 534:259–262Google Scholar
  12. Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346:954–959Google Scholar
  13. Bellew S, Thiboutot D, Del Rosso JQ (2011) Pathogenesis of acne vulgaris: what’s new, what’s interesting and what may be clinically relevant. J Drugs Dermatol 10:582–585Google Scholar
  14. Bennet JD, Brinkman M (1989) Treatment of ulcerative colitis by implantation of normal colonic flora. Lancet 1:164Google Scholar
  15. Betsi GI, Papadavid E, Falagas ME (2008) Probiotics for the treatment or prevention of atopic dermatitis: a review of the evidence from randomized controlled trials. Am J Clin Dermatol 9:93–103Google Scholar
  16. Bhambri S, Del Rosso JQ, Bhambri A (2009) Pathogenesis of acne vulgaris: recent advances. J Drugs Dermatol 8:615–618Google Scholar
  17. Bhatia BK, Millsop JW, Debbaneh M et al (2014) Diet and psoriasis, part II: celiac disease and role of a gluten-free diet. J Am Acad Dermatol 71:350–358Google Scholar
  18. Biagi E, Franceschi C, Rampelli F et al (2016) Gut microbiota and extreme longevity. Curr Biol 26:1480–1485Google Scholar
  19. Bik EM, Eckburg PB, Gill SR et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 103:732–737Google Scholar
  20. Bin L, Leung DY (2016) Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol 12:52 (eCollection 2016) Google Scholar
  21. Blaser M, Bork P, Fraser C et al (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11:213–217Google Scholar
  22. Borody TJ, George L, Andrews P et al (1989) Bowel-flora alteration: a potential cure for inflammatory bowel disease and irritable bowel syndrome? Med J Aust 150:604Google Scholar
  23. Borriello SP, Hammes WP, Holzapfel W et al (2003) Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36:775–780Google Scholar
  24. Bourrain M, Ribet V, Calvez A et al (2013) Balance between beneficial microflora and Staphylococcus aureus colonisation: in vivo evaluation in patients with atopic dermatitis during hydrotherapy. Eur J Dermatol 23:786–794Google Scholar
  25. Bouslimani A, Porto C, Rath CM et al (2015) Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci USA 112:E2120–E2129Google Scholar
  26. Bowe WP, Leyden JJ (2011) Clinical implications of antibiotic resistance: risk of systemic infection from Staphylococcus and Streptococcus. In: Shalita AR, Del Rosso JQ, Webster GF (eds) Acne vulgaris. Informa Healthcare, London, pp 125–133Google Scholar
  27. Bowe WP, Filip JC, DiRienzo JM et al (2006) Inhibition of Propionibacterium acnes by bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. J Drugs Dermatol 5:868–870Google Scholar
  28. Bowe W, Patel NB, Logan AC (2014) Acne vulgaris, probiotics and the gut-brain-skin axis: from anecdote to translational medicine. Benef Microbes 5:185–199Google Scholar
  29. Boyle RJ, Bath-Hextall FJ, Leonardi-Bee J et al (2008) Probiotics for treating eczema. Cochrane Database Syst Rev 4:CD006135Google Scholar
  30. Boženský J, Hill M, Zelenka R, Skýba T (2015) Prebiotics do not influence the severity of atopic dermatitis in infants: a randomised controlled trial. PLoS One 10:e0142897Google Scholar
  31. Byrd AL, Deming C, Cassidy SKB et al (2017) Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med 9:eaa14651Google Scholar
  32. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155Google Scholar
  33. Cammarota G, Ianiro G, Gasbarrini A (2014) Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol 48:693–702Google Scholar
  34. Cani PD, Everard A, Duparc T et al (2013) Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 13:935–940Google Scholar
  35. Ceyssens PJ, Lavigne R (2010) Bacteriophages of Pseudomonas. Future Microbiol 5:1041–1055Google Scholar
  36. Chang YS, Trivedi MK, Jha A et al (2016) Synbiotics for prevention and treatment of atopic dermatitis: a metaanalysis of randomized clinical trials. JAMA Pediatr 170:236–242Google Scholar
  37. Chen YE, Tsao H (2013) The skin microbiome: current perspectives and future challenges. J Am Acad Dermatol 69:143–155Google Scholar
  38. Cheng J, Ringel-Kulka T, Heikamp-de Jong I et al (2016) Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J 10:1002–1014Google Scholar
  39. Christensen GJ, Scholz CF, Enghild J et al (2016) Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomic 17:152Google Scholar
  40. Clark AK, Haas KN, Sivamani RK (2017) Edible plants and their influence on the gut microbiome and acne. Int J Mol Sci 18:E1070Google Scholar
  41. Coates P, Vyakrnam S, Ravenscroft JC et al (2005) Efficacy of oral isotretinoin in the control of skin and nasal colonization by antibiotic-resistant propionibacteria in patients with acne. Br J Dermatol 153:1126–1136Google Scholar
  42. Coughlin CC, Swink SM, Horwinski J et al (2017) The preadolescent acne microbiome: a prospective, randomized, pilot study investigating characterization and effects of acne therapy. Pediatr Dermatol 34:661–664Google Scholar
  43. Craig JM (2016) Atopic dermatitis and the intestinal microbiota in humans and dogs. Vet Med Sci 2:95–105Google Scholar
  44. De Palma G, Lynch MD, Lu J et al (2017) Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 9:eaaf6397Google Scholar
  45. Debbaneh M, Millsop JW, Bhatia BK et al (2014) Diet and psoriasis, part I: impact of weight loss interventions. J Am Acad Dermatol 71:133–140Google Scholar
  46. Del Chierico F, Abbatini F, Russo A et al (2018) Gut microbiota markers in obese adolescent and adult patients: age-dependent differential patterns. Front Microbiol 9:1210Google Scholar
  47. Delwart E (2013) A roadmap to the human virome. PLoS Pathog 9:e1003–e1046Google Scholar
  48. Di Marzio L, Centi C, Cinque B et al (2003) Effect of lactic acid bacterium Streptococcus thermophillus on stratum corneum ceramide levels and signs and symptoms of atopic dermatitis patients. Exp Dermatol 12:615–620Google Scholar
  49. Di Giulio DB, Romero R, Amogan HP et al (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3:e3056Google Scholar
  50. Di Marzio L, Cinque B, Cupelli F et al (2008) Increase of skinceramide levels in aged subjects following a short-term topical application of bacterial sphinomyelinase from Streptococcus thermophilus. Int J Immunopathol Pharmacol 21:137–143Google Scholar
  51. Di Meglio P, Duarte JH, Ahlfors H et al (2014) Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40:989–1001Google Scholar
  52. Dogan B, Karabudak O, Harmanyeri Y (2008) Antistreptococcal treatment of guttate psoriasis: a controlled study. Int J Dermatol 47:950–952Google Scholar
  53. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shake the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975Google Scholar
  54. Dotterud LK, Wilsgaard T, Vorland LH et al (2008) The effect of UVB radiation on skin microbiota in patients with atopic dermatitis and healthy controls. Int J Circumpolar Health 672:254–260Google Scholar
  55. Drago L, Toscano M, De Vecchi E et al (2012) Changing of fecal flora and clinical effect of L. salivarius LS01 in adults with atopic dermatitis. J Clin Gastroenterol 46(Suppl):S56–S63Google Scholar
  56. Dreno B, Martin R, Moyal D et al (2017) Skin microbiome and acne vulgaris: Staphylococcus, a new actor in acne. Exp Dermatol 26:798–803Google Scholar
  57. Eady AE, Cove JH, Layton AM (2003) Is antibiotic resistance in cutaneous propionibacteria clinically relevant? Implications of resistance for acne patients and prescribers. Am J Clin Dermatol 4:813–831Google Scholar
  58. Eppinga H, Sperna Weiland CJ, Thio HB et al (2016) Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in hidradenitis suppurativa. J Crohns Colitis 10:1067–1075Google Scholar
  59. Evans CA, Stevens RJ (1976) Differential quantitation of surface and subsurface bacteria of normal skin by the combined use of the cotton swab and the scrub methods. J Clin Microbiol 3:576–581Google Scholar
  60. Fabbrocini G, Izzo R, Donnarumma M et al (2014) Acne smart club: an educational program for patients with acne. Dermatology 229:136–140Google Scholar
  61. Findley K, Grice EA (2014) The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathog 10:e1004436Google Scholar
  62. Findley K, Oh J, Yang J et al (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370Google Scholar
  63. Fitz-Gibbon S, Tomida S, Chiu BH et al (2013) Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol 133:2152–2160Google Scholar
  64. Food and Agriculture Organization and World Health Organization Expert Consultation (2001) Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, 1–4 October 2001. ftp://ftp.fao.org/es/esn/food/probio_report_en.pdf
  65. Foolad N, Armstrong AW (2014) Prebiotics and probiotics: the prevention and reduction in severity of atopic dermatitis in children. Benef Microbes 5:151–160Google Scholar
  66. Foulongne V, Sauvage V, Hebert C et al (2012) Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One 7:e38499Google Scholar
  67. Fry L, Baker BS, Powles AV et al (2013) Is chronic plaque psoriasis triggered by microbiota in the skin? Br J Dermatol 169:47–52Google Scholar
  68. Fry L, Baker BS, Powles AV et al (2015) Psoriasis is not an autoimmune disease? Exp Dermatol 24:241–244Google Scholar
  69. Fulde M, Hornef MW (2014) Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 260:21–34Google Scholar
  70. Gallo RL, Nakatsuji T (2011) Microbial symbiosis with the innate immune defence system of the skin. J Invest Dermatol 131:1974–1980Google Scholar
  71. Gao Z, Tseng CH, Strober BE et al (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 3:e2719Google Scholar
  72. Ge X, Zhao W, Ding C et al (2017) Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep 7:441Google Scholar
  73. Geoghegan JA, Irvine AD, Foster TJ (2018) Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol 26:484–497Google Scholar
  74. Gibson GR (1998) Dietary modulation of the human gut microflora using prebiotics. Br J Nutr 80:S209–S212Google Scholar
  75. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412Google Scholar
  76. Gilani SJ, Gonzalez M, Hussain I et al (2005) Staphylococcus aureus re-colonization in atopic dermatitis: beyond the skin. Clin Exp Dermatol 30:10–13Google Scholar
  77. Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Annu Rev Mar Sci 3:347–371Google Scholar
  78. Gonzalez ME, Schaffer JV, Orlow SJ et al (2016) Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. J Am Acad Dermatol 75:481–493Google Scholar
  79. Gosalbes MJ, Llop S, Vallès Y et al (2013) Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 43:198–211Google Scholar
  80. Grice EA (2014) The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg 33:98–103Google Scholar
  81. Grice EA (2015) The intersection of microbiome and host at the skin interface: genomic- and metagenomic-based insights. Genome Res 25:1514–1520Google Scholar
  82. Grice EA, Kong HH, Renaud G et al (2008) A diversity profile of the human skin microbiota. Genome Res 18:1043–1050Google Scholar
  83. Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192Google Scholar
  84. Groeger D, O’Mahony L, Murphy EF et al (2013) Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 4:325–339Google Scholar
  85. Guet-Revillet H, Jais JP, Ungeheuer MN et al (2017) The microbiological landscape of anaerobic infections in hidradenitis suppurativa: a prospective metagenomic study. Clin Infect Dis 65:282–291Google Scholar
  86. Han Y, Kim B, Ban J et al (2012) A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis. Pediatr Allergy Immunol 23:667–673Google Scholar
  87. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685Google Scholar
  88. Hannigan GD, Meisel JS, Tyldsley AS et al (2015) The human skin double- stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 6:1578–1615Google Scholar
  89. Hollister EB, Riehle K, Ruth AL et al (2015) Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3:36Google Scholar
  90. Hon KL, Tsang YC, Pong NH et al (2016) Exploring Staphylococcus epidermidis in atopic eczema: friend or foe? Clin Exp Dermatol 41:659–663Google Scholar
  91. Honda K, Littman DR (2016) The microbiota in adaptive immune homeostasis and disease. Nature 535:75–84Google Scholar
  92. Human Microbiome Jumpstart Reference Strains Consortium, Nelson KE, Weinstock GM et al (2010) A catalog of reference genomes from the human microbiome. Science 328:994–999Google Scholar
  93. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214Google Scholar
  94. Iemoli E, Trabattoni D, Parisotto S et al (2012) Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J Clin Gastroenterol 46(Suppl):S33–S40Google Scholar
  95. Ijssennagger N, Belzer C, Hooiveld GJ et al (2015) Gut microbiota facilitates dietary heme induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci USA 112:10038–10043Google Scholar
  96. Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498Google Scholar
  97. Jakobsson HE, Jernberg C, Andersson AF et al (2010) Shortterm antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5:e9836Google Scholar
  98. Jemec GB, Faber M, Gutschik E et al (1996) The bacteriology of hidradenitis suppurativa. Dermatology 193:203–206Google Scholar
  99. Jiménez E, Fernández L, Marín ML et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274Google Scholar
  100. Joyce SA, Gahan CG (2014) The gut microbiota and the metabolic health of the host. Curr Opin Gastroenterol 30:120–127Google Scholar
  101. Juhlin L, Michaëlsson G (1983) Fibrin microclot formation in patients with acne. Acta Derm Venereol 63:538–540Google Scholar
  102. Jung GW, Tse JE, Guiha I et al (2013) Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne. J Cutan Med Surg 17:114–122Google Scholar
  103. Jung MJ, Lee J, Shin NR et al (2016) Chronic repression of mTOR complex 2 induces changes in the gut microbiota of diet-induced obese mice. Sci Rep 6:30887Google Scholar
  104. Kandasamy S, Chattha KS, Vlasova et al (2014) Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human Rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes 5:639–651Google Scholar
  105. Kandasamy S, Vlasova AN, Fischer DD et al (2017) Unraveling the differences between Gram-positive and Gram-negative probiotics in modulating protective immunity to enteric infections. Front Immunol 8:334Google Scholar
  106. Kang BS, Seo JG, Lee GS et al (2009) Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris and its therapeutic effect. J Microbiol 41:101–109Google Scholar
  107. Kassam Z, Lee CH, Yuan Y et al (2013) Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108:500–508Google Scholar
  108. Kelly CR, Ihunnah C, Fischer M et al (2014) Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 109:1065–1071Google Scholar
  109. Kelly CR, Kahn S, Kashyap P et al (2015) Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149:223–237Google Scholar
  110. Kelly JR, Borre Y, O’ Brien C et al (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118Google Scholar
  111. Kennedy EA, Connolly J, Hourihane JO et al (2017) Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol 139:166–172Google Scholar
  112. King MD, Humphrey BJ, Wang YF et al (2006) Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 144:309–317Google Scholar
  113. Kober MM, Bowe WP (2015) The effect of probiotics on immune regulation, acne and photoaging. Int J Womens Dermatol 1:85–89Google Scholar
  114. Kong HH, Oh J, Deming C et al (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859Google Scholar
  115. Kromann CB, Deckers IE, Esmann S et al (2014) Risk factors, clinical course and long-term prognosis in hidradenitis suppurativa: a cross-sectional study. Br J Dermatol 171:819–824Google Scholar
  116. Kukkonen K, Savilahti E, Haahtela T et al (2007) Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 119:192–198Google Scholar
  117. Kundu P, Blacher E, Elinav E et al (2017) Our gut microbiome: the evolving inner self. Cell 171:1481–1493Google Scholar
  118. Kurzen H, Kurokawa I, Jemec GB et al (2008) What causes hidradenitis suppurativa? Exp Dermatol 17:455–456 (discussion 457–472) Google Scholar
  119. Lacey N, Kavanagh K, Tseng SC (2009) Under the lash: Demodex mites in human diseases. Biochem 31:2–6Google Scholar
  120. Lacey N, Ní Raghallaigh S, Powell FC (2011) Demodex mites—commensals, parasites or mutualistic organisms? Dermatology 222:128–130Google Scholar
  121. Ladizinski B, McLean R, Lee KC et al (2014) The human skin microbiome. Int J Dermatol 53:1177–1179Google Scholar
  122. Langdon A, Crook N, Dantas G (2016) The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8:39Google Scholar
  123. Lapins J, Jarstrand C, Emtestam L (1999) Coagulase-negative staphylococci are the most common bacteria found in cultures from the deep portions of hidradenitis suppurativa lesions, as obtained by carbon dioxide laser surgery. Br J Dermatol 140:90–95Google Scholar
  124. Lee J, Seto D, Bielory L (2008) Meta-analysis of clinical trials of probiotics for prevention and treatment of pediatric atopic dermatitis. J Allergy Clin Immunol 121:116–121.e11Google Scholar
  125. Levy RM, Huang EY, Roling D et al (2003) Effect of antibiotics on the oropharyngeal flora in patients with acne. Arch Dermatol 139:467–471Google Scholar
  126. Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651Google Scholar
  127. Lombardo L, Foti M, Ruggia O et al (2010) Increased incidence of small intestinal bacterial overgrowth during proton pump inhibitor therapy. Clin Gastroenterol Hepatol 8:504–508Google Scholar
  128. Loveman DE, Noojin RO, Winkler CH Jr (1955) Comparative studies of enteric bacterial flora in acne vulgaris. J Invest Dermatol 25:135–137Google Scholar
  129. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379Google Scholar
  130. Manuzak JA, Hensley-McBain T, Zevin AS et al (2016) Enhancement of microbiota in healthy macaques results in beneficial modulation of mucosal and systemic immune function. J Immunol 196:2401–2409Google Scholar
  131. Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9:E1021Google Scholar
  132. Matusiak Ł, Bieniek A, Szepietowski JC (2014) Bacteriology of hidradenitis suppurativa—which antibiotics are the treatment of choice? Acta Derm Venereol 94:699–702Google Scholar
  133. McFadden JP, Baker BS, Powles AV et al (2009) Psoriasis and streptococci: the natural selection of psoriasis revisited. Br J Dermatol 160:929–937Google Scholar
  134. Meylan P, Lang C, Mermoud S et al (2017) Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Invest Dermatol 137:2497–2504Google Scholar
  135. Mikelsaar M, Zilmer M (2009) Lactobacillus fermentum ME-3—an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis 21:1–27Google Scholar
  136. Mohammedsaeed W, McBain AJ, Cruickshank SM et al (2014) Lactobacillus rhamnosus GG inhibits the toxic effects of Staphylococcus aureus on epidermal keratinocytes. Appl Environ Microbiol 80:5773–5781Google Scholar
  137. Moroi M, Uchi S, Nakamura K et al (2011) Beneficial effect of a diet containing heat-killed Lactobacillus paracasei K71 on adult type atopic dermatitis. J Dermatol 38:131–139Google Scholar
  138. Muizzuddin N, Maher W, Sullivan M et al (2012) Physiologic effect of a probiotic on skin. J Cosmet Sci 63:385–395Google Scholar
  139. Munz OH, Sela S, Baker BS et al (2010) Evidence for the presence of bacteria in the blood of psoriasis patients. Arch Dermatol Res 302:495–498Google Scholar
  140. Myles IA, Williams KW, Reckhow JD et al (2016) Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight 1:e86955Google Scholar
  141. Naik S, Bouladoux N, Wilhelm C et al (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119Google Scholar
  142. Naik S, Bouladoux N, Linehan JL et al (2015) Commensal-dendritic cell interaction specifies a unique protective skin immune signature. Nature 520:104–108Google Scholar
  143. Nakatsuji T, Chen TH, Two AM et al (2016) Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol 136:2192–2200Google Scholar
  144. Naldi L, Peli L, Parazzini F et al (2001) Family history of psoriasis, stressful life events, and recent infectious disease are risk factors for a first episode of acute guttate psoriasis: results of a case-control study. J Am Acad Dermatol 44:433–438Google Scholar
  145. NIH HMP Working Group, Peterson J, Garges S et al (2009) The NIH human microbiome project. Genome Res 19:2317–2323Google Scholar
  146. Niyonsaba F, Ushio H, Nakano N et al (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127:594–604Google Scholar
  147. Norrlind R (1950) Psoriasis following infections with hemolytic Streptococci. Acta Derm Venereol 30:64–72Google Scholar
  148. Nowrouzian FL, Lina G, Hodille E et al (2017) Superantigens and adhesions of infant gut commensal Staphylococcus aureus strains and association with subsequent development of atopic eczema. Br J Dermatol 176:439–445Google Scholar
  149. Numata S, Akamatsu H, Akaza N et al (2014) Analysis of facial skin-resident microbiota in Japanese acne patients. Dermatology 228:86–92Google Scholar
  150. O’Neill CA, Monteleone G, McLaughlin JT et al (2016) The gut-skin axis in health and disease: a paradigm with therapeutic implications. Bioessays 38:1167–1176Google Scholar
  151. O’Toole PW, Jeffery IB et al (2015) Gut microbiota and aging. Science 350:1214–1215Google Scholar
  152. Oh S, Kim SH, Ko Y et al (2006) Effect of bacteriocin produced by Lactococcus sp. HY 449 on skin-inflammatory bacteria. Food Chem Toxicol 44:552–559Google Scholar
  153. Oh J, Freeman AF, Park M et al (2013) The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res 23:2103–2114Google Scholar
  154. Oh J, Byrd AL, Deming C et al (2014) Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64Google Scholar
  155. Ohland CL, Jobin C (2015) Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cell Mol Gastroenterol Hepatol 1:28–40Google Scholar
  156. Orivuori L, Mustonen K, de Goffau MC et al (2015) PASTURE Study Group. High level of fecal calprotectin at age 2 months as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6. Clin Exp Allergy 45:928–939Google Scholar
  157. Ouwehand A, Isolauri E, Salminen S (2002) The role of the intestinal microflora for the development of the immune system in early childhood. Eur J Nutr 41(Suppl 1):I32–I37Google Scholar
  158. Owczarek W, Wydrzyńska A, Paluchowska E (2011) Antibiotic therapy in skin diseases. Pol Merkur Lekarski 30:367–372Google Scholar
  159. Ozuguz P, Callioglu EE, Tulaci KG et al (2014) Evaluation of nasal and oropharyngeal flora in patients with acne vulgaris according to treatment options. Int J Dermatol 53:1404–1408Google Scholar
  160. Parisi R, Symmons DP, Griffiths CE et al (2013) Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol 133:377–385Google Scholar
  161. Park KD, Pak SC, Park KK (2016) The pathogenetic effect of natural and bacterial toxins on atopic dermatitis. Toxins 9:E3Google Scholar
  162. Parker A, Lawson MAE, Vaux L et al (2018) Host-microbe interaction in the gastrointestinal tract. Environ Microbiol 20:2337–2353Google Scholar
  163. Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez ME et al (2017) Human intestinal microbiota: interaction between parasites and the host immune response. Arch Med Res 48:690–700Google Scholar
  164. Patra V, Byrne SN, Wolf P (2016) The skin microbiome: is it affected by UV-induced immune suppression? Front Microbiol 7:1235Google Scholar
  165. Penders J, Thijs C, Vink C et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521Google Scholar
  166. Prescott SL, Larcombe DL, Logan AC et al (2017) The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J 10:29Google Scholar
  167. Rachakonda TD, Dhillon JS, Florek AG et al (2015) Effect of tonsillectomy on psoriasis: a systematic review. J Am Acad Dermatol 72:261–275Google Scholar
  168. Rao K, Young VB (2015) Fecal microbiota transplantation for the management of Clostridium difficile infection. Infect Dis Clin North Am 29:109–122Google Scholar
  169. Reddymasu SC, Sostarich S, McCallum RW (2010) Small intestinal bacterial overgrowth in irritable bowel syndrome: are there any predictors? BMC Gastroenterol 10:23Google Scholar
  170. Requena T, Cotter P, Shahar DR et al (2013) Interactions between gut microbiota, food and the obese host. Trends Food Sci Technol 34:44–53Google Scholar
  171. Ring HC, Emtestam L (2016) The microbiology of hidradenitis suppurativa. Dermatol Clin 34:29–35Google Scholar
  172. Ring HC, Riis Mikkelsen P, Miller IM et al (2015) The bacteriology of hidradenitis suppurativa: a systematic review. Exp Dermatol 24:727–731Google Scholar
  173. Ring HC, Bay L, Kallenbach K et al (2017a) Normal skin microbiota is altered in pre-clinical hidradenitis suppurativa. Acta DermVenereol 97:208–213Google Scholar
  174. Ring HC, Thorsen J, Saunte DM et al (2017b) The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. JAMA Dermatol 153:897–905Google Scholar
  175. Robinson MM (1953) The relationship of streptococcus fecalis to psoriasis. J Invest Dermatol 20:455–459Google Scholar
  176. Robinson CJ, Young VB (2010) Antibiotic administration alters the community structure of the gastrointestinal micobiota. Gut Microbes 1:279–284Google Scholar
  177. Rosenbaum M, Knight R, Leibel RL et al (2015) The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 26:493–501Google Scholar
  178. Roudsari MR, Karimi R, Sohrabvandi S et al (2015) Health effects of probiotics on the skin. Crit Rev Food Sci Nutr 55:1219–1240Google Scholar
  179. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480Google Scholar
  180. Sanders ME, Akkermans LM, Haller D et al (2010) Safety assessment of probiotics for human use. Gut Microbes 1:164–185Google Scholar
  181. Sandilands A, Terron-Kwiatkowski A, Hull PR et al (2007) Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 39:650–654Google Scholar
  182. SanMiguel AJ, Meisel JS, Horwinski J et al (2017) topical antimicrobial treatments can elicit shifts to resident skin bacterial communities and reduce colonization by Staphylococcus aureus competitors. Antimicrob Agents Chemother 61:e00774–e00717Google Scholar
  183. Sartorius K, Killasli H, Oprica C et al (2012) Bacteriology of hidradenitis suppurativa exacerbations and deep tissue cultures obtained during carbon dioxide laser treatment. Br J Dermatol 166:879–883Google Scholar
  184. Schiffrin EJ, Thomas DR, Kumar VB et al (2007) Systemic inflammatory markers in older persons: the effect of oral nutritional supplementation with prebiotics. J Nutr Health Aging 11:475–479Google Scholar
  185. Seite S, Flores GE, Henley JB et al (2014) Microbiome of affected and unaffected skin of patients with atopic dermatitis before and after emollient treatment. J Drugs Dermatol 13:1365–1372Google Scholar
  186. Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754Google Scholar
  187. Sherman MP, Zaghouani H, Niklas V (2015) Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Pediatr Res 77:127–135Google Scholar
  188. Shi B, Bangayan NJ, Curd E et al (2016) The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol 138:1233–1236Google Scholar
  189. Song H, Yoo Y, Hwang J et al (2016) Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis. J Allergy Clin Immunol 137:852–860Google Scholar
  190. Stepankova R, Powrie F, Kofronova O et al (2007) Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RB high CD4 + T cells. Inflamm Bowel Dis 13:1202–1211Google Scholar
  191. Stokes JH, Pillsbury DH (1930) The effect on the skin of emotional and nervous states: theoretical and practical consideration of a gastrointestinal mechanism. Arch Dermatol Syphilol 22:962–993Google Scholar
  192. Strickler A, Kolmer JA, Schamberg JF (1916) Complement fixation in acne vulgaris. J Cutan Dis 34:166–178Google Scholar
  193. Thorleifsdottir RH, Eysteinsdottir JH, Olafsson JH et al (2016) throat infections are associated with exacerbation in a substantial proportion of patients with chronic plaque psoriasis. Acta Derm Venereol 96:788–791Google Scholar
  194. Thyssen JP, Zirwas MJ, Elias PM (2015) Potential role of reduced environmental UV exposure as a driver of the current epidemic of atopic dermatitis. J Allergy Clin Immunol 136:1163–1169Google Scholar
  195. Tlaskalova-Hogenova H, Stepankova R, Kozakova H et al (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8:110–120Google Scholar
  196. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031Google Scholar
  197. Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43Google Scholar
  198. Valdez Y, Brown EM, Finlay BB (2014) Influence of the microbiota on vaccine effectiveness. Trends Immunol 35:526–537Google Scholar
  199. Valdimarsson H, Baker BS, Jonsdottir I et al (1995) Psoriasis: a T-cell-mediated autoimmune disease induced by streptococcal superantigens? Immunol Today 16:145–149Google Scholar
  200. Van Nood E, Vrieze A, Nieuwdorp M et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415Google Scholar
  201. Van der Aa LB, Heymans HS, van Aalderen WM et al (2010) Effect of a new synbiotic mixture on atopic dermatitis in infants: a randomized-controlled trial. Clin Exp Allergy 40:795–804Google Scholar
  202. Vázquez-Baeza Y, Callewaert C, Debelius J et al (2018) Impacts of the human gut microbiome on therapeutics. Annu Rev Pharmacol Toxicol 58:253–270Google Scholar
  203. Verhelst R, Verstraelen H, Claeys G et al (2004) Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol 4:16Google Scholar
  204. Vijayashankar M, Raghunath N (2012) Pustular psoriasis responding to Probiotics—a new insigh. Our Dermatology Online 3:326–329Google Scholar
  205. Volkova LA, Khalif IL, Kabanova IN (2001) Impact of the impaired intestinal microflora on the course of acne vulgaris. Klin Med 79:39–41Google Scholar
  206. Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916.e7Google Scholar
  207. Wang Y, Kuo S, Shu M et al (2014) Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol 98:411–424Google Scholar
  208. Wang H, Gao K, Wen K et al (2016) Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to Rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol 16:109Google Scholar
  209. Wickens K, Stanley TV, Mitchell EA et al (2013) Early supplementation with Lactobacillus rhamnosus HN001 reduces eczema prevalence to 6 years: does it also reduce atopic sensitization? Clin Exp Allergy 43:1048–1057Google Scholar
  210. Williams HC (2005) Clinical practice. Atopic dermatitis. N Engl J Med 352:2314–2324Google Scholar
  211. Williams MR, Gallo RL (2015) The role of the skin microbiome in atopic dermatitis. Curr Allergy Asthma Rep 15:65Google Scholar
  212. Williams MR, Nakatsuji T, Sanford JA et al (2017) Staphylococcus aureus induces increased serine protease activity in keratinocytes. J Invest Dermatol 137:377–384Google Scholar
  213. Willing BP, Russell SL, Finlay BB (2011) Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol 9:233–243Google Scholar
  214. Wohl DL, Curry WJ, Mauger D et al (2015) Intrapartum antibiotics and childhood atopic dermatitis. J Am Board Fam Med 28:82–89Google Scholar
  215. Xia X, Li Z, Liu K et al (2016) Staphylococcal LTA-induced miR-143 inhibits propionibacterium acnes-mediated inflammatory response in skin. J Invest Dermatol 136:621–630Google Scholar
  216. Xu J, Saunders CW, Hu P et al (2007) Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA 104:18730–18735Google Scholar
  217. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227Google Scholar
  218. Young VB (2016) Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clin Microbiol Infect 22:905–909Google Scholar
  219. Yuki T, Yoshida H, Akazawa Y et al (2011) Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol 187:3230–3237Google Scholar
  220. Zákostelská Z, Málková J, Klimešová K et al (2016) Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS One 11:e0159539Google Scholar
  221. Zanvit P, Konkel JE, Jiao X et al (2015) Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun 6:8424Google Scholar
  222. Zeng J, Luo S, Huang Y et al (2017) Critical role of environmental factors in the pathogenesis of psoriasis. J Dermatol 44:863–872Google Scholar
  223. Zhang E, Tanaka T, Tajima M et al (2011) Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol 55:625–632Google Scholar
  224. Zhang H, Wang H, Shepherd M et al (2014) Probiotics and virulent human Rotavirus modulate the transplanted human gut microbiota in gnotobiotic pigs. Gut Pathog 6:39Google Scholar
  225. Zheng P, Zeng B et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21:786–796Google Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2018

Authors and Affiliations

  1. 1.Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
  2. 2.Section of Dermatology and Venereology, Department of Clinical Medicine and SurgeryUniversity of Naples Federico IINaplesItaly

Personalised recommendations