Advertisement

Characteristics of enterotoxin-producing methicillin-resistant Staphylococcus aureus strains isolated from meat in Tehran, Iran

  • Fateh RahimiEmail author
  • Rasoul Shafiei
Research Article
  • 1 Downloads

Abstract

In this study, we investigated the clonality, antibiotic susceptibility and presence of different enterotoxin genes among 49 methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from 131 fresh raw meat samples in Tehran, Iran during 2016. 47% of beef, 30% of chicken and 27% of turkey samples were MRSA positive. PhenePlate (PhP typing) revealed the presence of 12 PhP types consisting of five common types and seven single types, and 86% of the strains harbored staphylococcal cassette chromosome mec (SCCmec) type III and type 3 cassette chromosome recombinases (ccr). Moreover, SCCmec type IVa was positive in all isolates with SGA prophage types. High level resistance to ciprofloxacin, erythromycin, tobramycin and kanamycin was also observed. The rate of resistance to most of the antibiotics tested was higher in chicken samples compared to other meat samples. Out of eleven different enterotoxin genes found, sea, sek and seq were the dominant genes in all strains. Our results illustrate the presence and persistence of highly resistant clonal groups of enterotoxin-producing MRSA in meat samples. These isolates had PhP and SCCmec types and prophage patterns which were similar to the clinical isolates previously reported in Iran, supporting the notion of dissemination of the MRSA in the hospital, community, as well food products in Iran.

Keywords

Enterotoxin MRSA Meat PhP typing SCCmec Prophage 

Notes

Acknowledgements

This research was funded, in part, by an operating grant of the Vice Chancellor for Research and Technology at University of Isfahan.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with the organization that sponsored this research and publications arising from this research.

Supplementary material

3_2019_1239_MOESM1_ESM.pdf (68 kb)
Supplementary material 1 (PDF 67 kb)

References

  1. Aarestrup FM, Agersø Y, Ahrens P, Jørgensen JCØ, Madsen M, Jensen LB (2000) Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Vet Microbiol 74:353–364CrossRefGoogle Scholar
  2. Abdalrahman LS, Stanley A, Wells H, Fakhr MK (2015) Isolation, virulence, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MSSA) strains from Oklahoma retail poultry meats. Int J Environ Res Public Health 12:6148–6161CrossRefGoogle Scholar
  3. Bal AM, Gould IM (2005) Antibiotic resistance in Staphylococcus aureus and its relevance in therapy. Expert Opin Pharmaco 6:2257–2269CrossRefGoogle Scholar
  4. Barber DA, Miller GY, McNamara PE (2003) Models of antimicrobial resistance and foodborne illness: examining assumptions and practical applications. J Food Protect 66:700–709CrossRefGoogle Scholar
  5. Clinical and Laboratory Standard Institute C (2014) Performance standards for antimicrobial susceptibility testing, 24th informational supplement. Clinical and Laboratory Standard Institute, WayneGoogle Scholar
  6. De Boer E, Zwartkruis-Nahuis J, Wit B, Huijsdens X, De Neeling A, Bosch T, Van Oosterom R, Vila A, Heuvelink A (2009) Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int J Food Microbiol 134:52–56CrossRefGoogle Scholar
  7. Feßler AT, Kadlec K, Hassel M, Hauschild T, Eidam C, Ehricht R, Monecke S, Schwarz S (2011) Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl Environ Microbiol 77:7151–7157CrossRefGoogle Scholar
  8. Guran HS, Kahya S (2015) Species diversity and pheno-and genotypic antibiotic resistance patterns of staphylococci isolated from retail ground meats. J Food Sci 80:M1291–M1298CrossRefGoogle Scholar
  9. Hanson B, Dressler A, Harper A, Scheibel R, Wardyn S, Roberts L, Kroeger J, Smith T (2011) Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. J Infect Public Health 4:169–174CrossRefGoogle Scholar
  10. Hasman H, Moodley A, Guardabassi L, Stegger M, Skov R, Aarestrup FM (2010) Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet Microbiol 141:326–331CrossRefGoogle Scholar
  11. Jackson CR, Davis JA, Barrett JB (2013) Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from retail meat and humans in Georgia. J Clin Microbiol 51:1199–1207CrossRefGoogle Scholar
  12. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etienne J, Vandenesch F, Bonneville M, Lina G (2001) egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677CrossRefGoogle Scholar
  13. Kelman A, Soong Y-A, Dupuy N, Shafer D, Richbourg W, Johnson K, Brown T, Kestler E, Li Y, Zheng J (2011) Antimicrobial susceptibility of Staphylococcus aureus from retail ground meats. J Food Protect 74:1625–1629CrossRefGoogle Scholar
  14. Khanna T, Friendship R, Dewey C, Weese J (2008) Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol 128:298–303CrossRefGoogle Scholar
  15. Kraushaar B, Fetsch A (2014) First description of PVL-positive methicillin-resistant Staphylococcus aureus (MRSA) in wild boar meat. Int J Food Microbiol 186:68–73CrossRefGoogle Scholar
  16. Lowder BV, Guinane CM, Zakour NLB, Weinert LA, Conway-Morris A, Cartwright RA, Simpson AJ, Rambaut A, Nübel U, Fitzgerald JR (2009) Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. PNAS 106:19545–19550CrossRefGoogle Scholar
  17. Lozano C, López M, Gómez-Sanz E, Ruiz-Larrea F, Torres C, Zarazaga M (2009) Detection of methicillin-resistant Staphylococcus aureus ST398 in food samples of animal origin in Spain. J Antimicrob Chemother 64:1325–1326CrossRefGoogle Scholar
  18. Lozano C, Gharsa H, Ben Slama K, Zarazaga M, Torres C (2016) Staphylococcus aureus in animals and food: methicillin resistance, prevalence and population structure. A review in the African continent. Microorganisms 4:12CrossRefGoogle Scholar
  19. McClure J-A, Conly JM, Lau V, Elsayed S, Louie T, Hutchins W, Zhang K (2006) Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from-resistant staphylococci. J Clin Microbiol 44:1141–1144CrossRefGoogle Scholar
  20. Mlynarczyk B, Mlynarczyk A, Kmera-Muszynska M, Majewski S, Mlynarczyk G (2010) Mechanisms of resistance to antimicrobial drugs in pathogenic Gram-positive cocci. Mini Rev Med Chem 10:928–937CrossRefGoogle Scholar
  21. Normanno G, Corrente M, La Salandra G, Dambrosio A, Quaglia N, Parisi A, Greco G, Bellacicco A, Virgilio S, Celano G (2007) Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product in Italy. Int J Food Microbiol 117:219–222CrossRefGoogle Scholar
  22. Pantůček R, Doškař J, Růžičková V, Kašpárek P, Oráčová E, Kvardová V, Rosypal S (2004) Identification of bacteriophage types and their carriage in Staphylococcus aureus. Arch Virol 149:1689–1703CrossRefGoogle Scholar
  23. Persoons D, Van Hoorebeke S, Hermans K, Butaye P, De Kruif A, Haesebrouck F, Dewulf J (2009) Methicillin-resistant Staphylococcus aureus in poultry. Emerg Infect Dis 15:452CrossRefGoogle Scholar
  24. Pesavento G, Ducci B, Comodo N, Nostro AL (2007) Antimicrobial resistance profile of Staphylococcus aureus isolated from raw meat: a research for methicillin resistant Staphylococcus aureus (MRSA). Food Control 18:196–200CrossRefGoogle Scholar
  25. Pu S, Han F, Ge B (2009) Isolation and characterization of methicillin-resistant Staphylococcus aureus strains from Louisiana retail meats. Appl Environ Microbiol 75:265–267CrossRefGoogle Scholar
  26. Rahimi F (2016) Characterization of resistance to aminoglycosides in methicillin-resistant Staphylococcus aureus strains isolated from a tertiary care hospital in Tehran, Iran. Jundishapur J Microbiol 9:e29237CrossRefGoogle Scholar
  27. Rahimi F, Bouzari M (2015) Biochemical fingerprinting of methicillin-resistant Staphylococcus aureus isolated from sewage and hospital in Iran. Jundishapur J Microbiol 8:e19760Google Scholar
  28. Rahimi F, Karimi S (2015) Characteristics of methicillin resistant Staphylococcus aureus strains isolated from poultry in Iran. Arch Clin Infect Dis 10:e30885CrossRefGoogle Scholar
  29. Rahimi F, Karimi S (2016) Isolation of methicillin-resistant Staphylococcus aureus strains producing enterotoxins A, K and Q from chicken meat in Isfahan, Iran, 2014. Arch Clin Infect Dis 11:e35601Google Scholar
  30. Rahimi F, Shokoohizadeh L (2016) Characterization of methicillin resistant Staphylococcus aureus strains among inpatients and outpatients in a referral hospital in Tehran, Iran. Microb Pathog 97:89–93CrossRefGoogle Scholar
  31. Rahimi F, Shokoohizadeh L (2018) Characterization of virulence factors and prophage profiles of methicillin-resistant Staphylococcus aureus strains isolated from a referral hospital in Tehran, Iran. Arch Clin Infect Dis 13:e59385Google Scholar
  32. Rahimi F, Bouzari M, Katouli M, Pourshafie MR (2012) Prophage and antibiotic resistance profiles of methicillin-resistant Staphylococcus aureus strains in Iran. Arch Virol 157:1807–1811CrossRefGoogle Scholar
  33. Rahimi F, Bouzari M, Katouli M, Pourshafie M (2013a) Prophage typing of methicillin resistant Staphylococcus aureus isolated from a tertiary care hospital in Tehran. Iran. Jundishapur J Microbiol 6:80–85CrossRefGoogle Scholar
  34. Rahimi F, Bouzari M, Katouli M, Pourshafie MR (2013b) Antibiotic resistance pattern of methicillin resistant and methicillin sensitive Staphylococcus aureus isolates in Tehran, Iran. Jundishapur J Microbiol 6:144–149CrossRefGoogle Scholar
  35. Rahimi F, Katouli M, Pourshafie MR (2014) Characteristics of hospital-and community-acquired meticillin-resistant Staphylococcus aureus in Tehran, Iran. J Med Microbiol 63:796–804CrossRefGoogle Scholar
  36. Rahimi F, Katouli M, Karimi S (2016) Biofilm production among methicillin resistant Staphylococcus aureus strains isolated from catheterized patients with urinary tract infection. Microb Pathog 98:69–76CrossRefGoogle Scholar
  37. Schelin J, Wallin-Carlquist N, Cohn MT, Lindqvist R, Barker GC, Rådström P (2011) The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2:580CrossRefGoogle Scholar
  38. Sergeev N, Volokhov D, Chizhikov V, Rasooly A (2004) Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligonucleotide microarray assay. J Clin Microbiol 42:2134–2143CrossRefGoogle Scholar
  39. Smith TC (2015) Livestock-associated Staphylococcus aureus: the United States experience. PLoS Pathog 11:e1004564CrossRefGoogle Scholar
  40. Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, Capuano AW, Herwaldt LA, Diekema DJ (2009) Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern US swine and swine workers. PLoS One 4:e4258CrossRefGoogle Scholar
  41. Teramoto H, Salaheen S, Biswas D (2016) Contamination of post-harvest poultry products with multidrug resistant Staphylococcus aureus in Maryland-Washington DC metro area. Food Control 65:132–135CrossRefGoogle Scholar
  42. Van Loo IH, Diederen B, Savelkoul P, Woudenberg J, Roosendaal R, Van Belkum A, Lemmens-den Toom N, Verhulst C, Van Keulen P, Kluytmans J (2007) Methicillin-resistant Staphylococcus aureus in meat products, the Netherlands. Emerg Infect Dis 13:1753CrossRefGoogle Scholar
  43. Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P (2010) Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect 138:606–625CrossRefGoogle Scholar
  44. Velasco V, Sherwood JS, Rojas-García PP, Logue CM (2014) Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-Valentine leukocidin (PVL) genes from selective enrichments from animals and retail meat. PLoS One 9:e97617CrossRefGoogle Scholar
  45. Weese JS (2010) Methicillin-resistant Staphylococcus aureus in animals. ILAR J 51:233–244CrossRefGoogle Scholar
  46. Weese JS, Reid-Smith R, Rousseau J, Avery B (2010) Methicillin-resistant Staphylococcus aureus (MRSA) contamination of retail pork. Can Vet J 51:749Google Scholar
  47. Wertheim H, Verbrugh HA, Van Pelt C, De Man P, Van Belkum A, Vos MC (2001) Improved detection of methicillin-resistant Staphylococcus aureus using phenyl mannitol broth containing aztreonam and ceftizoxime. J Clin Microbiol 39:2660–2662CrossRefGoogle Scholar
  48. Zouharova M, Rysanek D (2008) Multiplex PCR and RPLA identification of Staphylococcus aureus enterotoxigenic strains from bulk tank milk. Zoonoses Public Health 55:313–319CrossRefGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of SciencesUniversity of IsfahanIsfahanIran
  2. 2.Department of Biology, Faculty of SciencesUniversity of IsfahanIsfahanIran

Personalised recommendations