Advertisement

Archiv der Mathematik

, Volume 77, Issue 3, pp 273–277 | Cite as

Meromorphic functions sharing small functions

  • K. Ishizaki
Article
  • 55 Downloads

Abstract.

Let f and g be meromorphic functions sharing four small functions \( a_1, a_2, a_3, a_4 \) ignoring multiplicities. If there is a small function \(a_5\) distinct from \( a_j, j=1, 2, 3, 4, \) such that \( \overline {N}(r,f=a_5=g)\ne S(r,f) \), then \( f=g \), where \( \overline{N}(r,f=a_5=g) \) is the counting function of those common zeros of \( f(z)-a_5(z) \) and \( g(z)-a_5(z) \) counted only once ignoring multiplicities.

Keywords

Meromorphic Function Counting Function Common Zero Small Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2001

Authors and Affiliations

  • K. Ishizaki
    • 1
  1. 1.Department of Mathematics, Nippon Institute of Technology, 4-1 Gakuendai Miyashiro, Minamisaitama, Saitama 345-8501, JapanJapan

Personalised recommendations