Advertisement

Journal of High Energy Physics

, 2018:133 | Cite as

Memory, Penrose limits and the geometry of gravitational shockwaves and gyratons

  • Graham M. ShoreEmail author
Open Access
Regular Article - Theoretical Physics
  • 88 Downloads

Abstract

The geometric description of gravitational memory for strong gravitational waves is developed, with particular focus on shockwaves and their spinning analogues, gyratons. Memory, which may be of position or velocity-encoded type, characterises the residual separation of neighbouring ‘detector’ geodesics following the passage of a gravitational wave burst, and retains information on the nature of the wave source. Here, it is shown how memory is encoded in the Penrose limit of the original gravitational wave spacetime and a new ‘timelike Penrose limit’ is introduced to complement the original plane wave limit appropriate to null congruences. A detailed analysis of memory is presented for timelike and null geodesic congruences in impulsive and extended gravitational shockwaves of Aichelburg-Sexl type, and for gyratons. Potential applications to gravitational wave astronomy and to quantum gravity, especially infra-red structure and ultra-high energy scattering, are briefly mentioned.

Keywords

Classical Theories of Gravity Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Ya.B. Zel’dovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of super-dense stars, Sov. Astron. 18 (1974) 17 [Astron. Zh. 51 (1974) 30].Google Scholar
  2. [2]
    V.B. Braginsky and L.P. Grishchuk, Kinematic resonance and memory effect in free mass gravitational antennas, Sov. Phys. JETP 62 (1985) 427 [Zh. Eksp. Teor. Fiz. 89 (1985) 744] [INSPIRE].
  3. [3]
    H. Bondi, Plane gravitational waves in general relativity, Nature 179 (1957) 1072 [INSPIRE].CrossRefzbMATHGoogle Scholar
  4. [4]
    L.P. Grishchuk and A.G. Polnarev, Gravitational wave pulses with ‘velocity coded memory, Sov. Phys. JETP 69 (1989) 653 [Zh. Eksp. Teor. Fiz. 96 (1989) 1153] [INSPIRE].
  5. [5]
    R. Penrose, A Remarkable property of plane waves in general relativity, Rev. Mod. Phys. 37 (1965) 215 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Penrose, Any space-time has a plane wave as a limit, in Differential Geometry and Relativity: A Volume in Honour of André Lichnerowicz on his 60th Birthday, M. Cahen and M. Flato eds., Springer, Germany (1976).Google Scholar
  7. [7]
    M. Blau, D. Frank and S. Weiss, Fermi coordinates and Penrose limits, Class. Quant. Grav. 23 (2006) 3993 [hep-th/0603109] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T.J. Hollowood, G.M. Shore and R.J. Stanley, The refractive index of curved spacetime II: QED, Penrose limits and black holes, JHEP 08 (2009) 089 [arXiv:0905.0771] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    H. Stephani et al., Exact solutions of Einstein’s field equations, 2nd edition, Cambridge University Press, Cambridge U.K. (2003).Google Scholar
  10. [10]
    J.B. Griffiths and J. Podolsky, Exact space-times in Einstein’s general relativity, 1st edition, Cambridge University Press, Cambridge U.K. (2009).Google Scholar
  11. [11]
    G.W. Gibbons and S.W. Hawking, Theory of the detection of short bursts of gravitational radiation, Phys. Rev. D 4 (1971) 2191 [INSPIRE].Google Scholar
  12. [12]
    M. Favata, The gravitational-wave memory effect, Class. Quant. Grav. 27 (2010) 084036 [arXiv:1003.3486] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P.D. Lasky et al., Detecting gravitational-wave memory with LIGO: implications of GW150914, Phys. Rev. Lett. 117 (2016) 061102 [arXiv:1605.01415] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    L.O. McNeill, E. Thrane and P.D. Lasky, Detecting gravitational wave memory without parent signals, Phys. Rev. Lett. 118 (2017) 181103 [arXiv:1702.01759] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    C. Talbot, E. Thrane, P.D. Lasky and F. Lin, Gravitational-wave memory: waveforms and phenomenology, Phys. Rev. D 98 (2018) 064031 [arXiv:1807.00990] [INSPIRE].Google Scholar
  16. [16]
    A.I. Harte, Strong lensing, plane gravitational waves and transient flashes, Class. Quant. Grav. 30 (2013) 075011 [arXiv:1210.1449] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A.I. Harte, Optics in a nonlinear gravitational plane wave, Class. Quant. Grav. 32 (2015) 175017 [arXiv:1502.03658] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    T.J. Hollowood and G.M. Shore, Causality violation, gravitational shockwaves and UV completion, JHEP 03 (2016) 129 [arXiv:1512.04952] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll symmetry of plane gravitational waves, Class. Quant. Grav. 34 (2017) 175003 [arXiv:1702.08284] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, The memory effect for plane gravitational waves, Phys. Lett. B 772 (2017) 743 [arXiv:1704.05997] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, Soft gravitons and the memory effect for plane gravitational waves, Phys. Rev. D 96 (2017) 064013 [arXiv:1705.01378] [INSPIRE].MathSciNetGoogle Scholar
  22. [22]
    G.M. Shore, A new twist on the geometry of gravitational plane waves, JHEP 09 (2017) 039 [arXiv:1705.09533] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    P.M. Zhang, C. Duval and P.A. Horvathy, Memory effect for impulsive gravitational waves, Class. Quant. Grav. 35 (2018) 065011 [arXiv:1709.02299] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, Velocity memory effect for polarized gravitational waves, JCAP 05 (2018) 030 [arXiv:1802.09061] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    P.M. Zhang, M. Elbistan, G.W. Gibbons and P.A. Horvathy, Sturm-Liouville and Carroll: at the heart of the memory effect, Gen. Rel. Grav. 50 (2018) 107 [arXiv:1803.09640] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    P.M. Zhang et al., Ion traps and the memory effect for periodic gravitational waves, Phys. Rev. D 98 (2018) 044037 [arXiv:1807.00765] [INSPIRE].MathSciNetGoogle Scholar
  27. [27]
    P.C. Aichelburg and R.U. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].
  29. [29]
    G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].
  30. [30]
    I.J. Muzinich and M. Soldate, High-energy unitarity of gravitation and strings, Phys. Rev. D 37 (1988) 359 [INSPIRE].Google Scholar
  31. [31]
    D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at Planckian energies, Phys. Lett. B 197 (1987) 81 [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    T.J. Hollowood and G.M. Shore, The refractive index of curved spacetime: the fate of causality in QED, Nucl. Phys. B 795 (2008) 138 [arXiv:0707.2303] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    T.J. Hollowood and G.M. Shore, The Causal Structure of QED in Curved Spacetime: Analyticity and the Refractive Index, JHEP 12 (2008) 091 [arXiv:0806.1019] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    T.J. Hollowood and G.M. Shore, The effect of gravitational tidal forces on renormalized quantum fields, JHEP 02 (2012) 120 [arXiv:1111.3174] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    T.J. Hollowood and G.M. Shore, Causality, renormalizability and ultra-high energy gravitational scattering, J. Phys. A 49 (2016) 215401 [arXiv:1601.06989] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  36. [36]
    C.O. Lousto and N.G. Sanchez, Gravitational shock waves of ultrahigh energetic particles on curved space-times, Phys. Lett. B 220 (1989) 55 [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    V. Ferrari and P. Pendenza, Boosting the Kerr metric, Gen. Rel. Grav. 22 (1990) 1105.MathSciNetCrossRefGoogle Scholar
  38. [38]
    H. Balasin and H. Nachbagauer, The ultrarelativistic Kerr geometry and its energy momentum tensor, Class. Quant. Grav. 12 (1995) 707 [gr-qc/9405053] [INSPIRE].
  39. [39]
    H. Balasin and H. Nachbagauer, Boosting the Kerr geometry into an arbitrary direction, Class. Quant. Grav. 13 (1996) 731 [gr-qc/9508044] [INSPIRE].
  40. [40]
    K. Hayashi and T. Samura, Gravitational shock waves for Schwarzschild and Kerr black holes, Phys. Rev. D 50 (1994) 3666 [gr-qc/9404027] [INSPIRE].
  41. [41]
    C.O. Lousto and N.G. Sanchez, The Ultrarelativistic limit of the Kerr-Newman geometry and particle scattering at the Planck scale, Phys. Lett. B 232 (1989) 462 [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    C.O. Lousto and N.G. Sanchez, The Ultrarelativistic limit of the boosted Kerr-Newman geometry and the scattering of spin 1/2 particles, Nucl. Phys. B 383 (1992) 377 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    H. Yoshino, Lightlike limit of the boosted Kerr black holes in higher-dimensional spacetimes, Phys. Rev. D 71 (2005) 044032 [gr-qc/0412071] [INSPIRE].
  44. [44]
    R.-G. Cai, J.-Y. Ji and K.-S. Soh, Ultrarelativistic limits of boosted dilaton black holes, Nucl. Phys. B 528 (1998) 265 [gr-qc/9801097] [INSPIRE].
  45. [45]
    D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].
  46. [46]
    H. Yoshino and V.S. Rychkov, Improved analysis of black hole formation in high-energy particle collisions, Phys. Rev. D 71 (2005) 104028 [Erratum ibid. D 77 (2008) 089905] [hep-th/0503171] [INSPIRE].
  47. [47]
    H. Yoshino and R.B. Mann, Black hole formation in the head-on collision of ultrarelativistic charges, Phys. Rev. D 74 (2006) 044003 [gr-qc/0605131] [INSPIRE].
  48. [48]
    H. Yoshino, A. Zelnikov and V.P. Frolov, Apparent horizon formation in the head-on collision of gyratons, Phys. Rev. D 75 (2007) 124005 [gr-qc/0703127] [INSPIRE].
  49. [49]
    V.P. Frolov, W. Israel and A. Zelnikov, Gravitational field of relativistic gyratons, Phys. Rev. D 72 (2005) 084031 [hep-th/0506001] [INSPIRE].MathSciNetGoogle Scholar
  50. [50]
    V.P. Frolov and D.V. Fursaev, Gravitational field of a spinning radiation beam-pulse in higher dimensions, Phys. Rev. D 71 (2005) 104034 [hep-th/0504027] [INSPIRE].Google Scholar
  51. [51]
    J. Podolsky, R. Steinbauer and R. Svarc, Gyratonic pp-waves and their impulsive limit, Phys. Rev. D 90 (2014) 044050 [arXiv:1406.3227] [INSPIRE].Google Scholar
  52. [52]
    E. Poisson, A relativist’s toolkit — The mathematics of black-hole mechanics, Cambridge University Press, Cambridge U.K. (2004).CrossRefzbMATHGoogle Scholar
  53. [53]
    M. Blau and M. O’Loughlin, Homogeneous plane waves, Nucl. Phys. B 654 (2003) 135 [hep-th/0212135] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
  55. [55]
    V. Ferrari, P. Pendenza and G. Veneziano, Beamlike gravitational waves and their geodesics, Gen. Rel. Grav. 20 (1988) 1185 [INSPIRE].CrossRefzbMATHGoogle Scholar
  56. [56]
    G.M. Shore, Constructing time machines, Int. J. Mod. Phys. A 18 (2003) 4169 [gr-qc/0210048] [INSPIRE].
  57. [57]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    G. Papallo and H.S. Reall, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP 11 (2015) 109 [arXiv:1508.05303] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    LIGO Scientific, Virgo collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  60. [60]
    LIGO Scientific, Virgo collaboration, B.P. Abbott et al., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
  61. [61]
    LIGO Scientific, Virgo collaboration, B. Abbott et al., GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
  62. [62]
    P. Amaro-Seoane et al., Low-frequency gravitational-wave science with eLISA/NGO, Class. Quant. Grav. 29 (2012) 124016 [arXiv:1202.0839] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    A. Loeb and D. Maoz, Using atomic clocks to detect gravitational waves, arXiv:1501.00996 [INSPIRE].
  64. [64]
    S. Kolkowitz et al., Gravitational wave detection with optical lattice atomic clocks, Phys. Rev. D 94 (2016) 124043 [arXiv:1606.01859] [INSPIRE].Google Scholar
  65. [65]
    P.C. Aichelburg and H. Balasin, Symmetries of pp waves with distributional profile, Class. Quant. Grav. 13 (1996) 723 [gr-qc/9509025] [INSPIRE].
  66. [66]
    I. Ozsváth and E. Schücking, An anti-Mach metric, in Recent Developments in General Relativity, A. Masiello et al. eds., Pergamon Press, Oxford U.K. (1962).Google Scholar
  67. [67]
    A. Ilderton, Screw-symmetric gravitational waves: a double copy of the vortex, Phys. Lett. B 782 (2018) 22 [arXiv:1804.07290] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceSwansea UniversitySwanseaU.K.

Personalised recommendations